The existence and multiplicity results are obtained for periodic solutions of second order systems at resonance with unbounded nonlinearity. The proofs rely on the minimax methods and an interesting integral inequality.
Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmet...Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmetric solitons upon assigning appropriate values to some parameters.Furthermore,a double-peaked lump solution can be constructed with breather degeneration approach.By applying a mixed technique of a resonance ansatz and conjugate complexes of partial parameters to multisoliton solutions,various kinds of interactional structures are constructed;There include the soliton molecule(SM),the breather molecule(BM)and the soliton-breather molecule(SBM).Graphical investigation and theoretical analysis show that the interactions composed of SM,BM and SBM are inelastic.展开更多
Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kau...Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(gKDKK) equation by using the velocity resonance, module resonance, and long wave limits methods. By selecting some specific parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps,breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed.展开更多
Adding a U(1) symmetry breaking term √V(λ1a0 + λ1*a0) + √V(λ2b0 + λ2*b0) to Bogoliubov's truncated Hamiltonian HB for a weakly interacting coupled Bose system, by using the mean-field approximation r...Adding a U(1) symmetry breaking term √V(λ1a0 + λ1*a0) + √V(λ2b0 + λ2*b0) to Bogoliubov's truncated Hamiltonian HB for a weakly interacting coupled Bose system, by using the mean-field approximation rather than the c-number approximation, we And that, via a Feshbach resonance at zero temperature, the states of the coupled Bose system are generalized SU(1,1) SU(1,1) coherent states. The Bose-Einstein condensation occurs in response to the spontaneous U(1) symmetry breaking.展开更多
According to a linear equation of the laser intensity of single-mode laser with input signal, we compute the generalized signal-to-noise ratio (GSNR) in the instantaneous-state of the single-mode laser, which is dri...According to a linear equation of the laser intensity of single-mode laser with input signal, we compute the generalized signal-to-noise ratio (GSNR) in the instantaneous-state of the single-mode laser, which is driven by two colored noises and correlated in the form of an e-exponential function. We detect that the stochastic resonance (SR) also occurs on instantaneous state at any time. Furthermore we discuss the GSNR trend to stable state in three different forms when taking different signal frequencies.展开更多
A photoionization cross section calculation ofMn^+ is performed in the formalism of many-body perturbation theory for photon energies ranging from 48 eV to 56 eV. We consider excitations from the 3p, 3d, and 4s subsh...A photoionization cross section calculation ofMn^+ is performed in the formalism of many-body perturbation theory for photon energies ranging from 48 eV to 56 eV. We consider excitations from the 3p, 3d, and 4s subshells. The effects of the strong 3p→ 3d and 3p→ 4s transitions are included as resonant contributions to the total cross sections. Good agreement with experiment is found.展开更多
Dense coding using superpositions of Bell-states is proposed. The generalized Grover's algorithm is used to prepare the initial entangled states, and the reverse process of the quantum algorithm is used to determi...Dense coding using superpositions of Bell-states is proposed. The generalized Grover's algorithm is used to prepare the initial entangled states, and the reverse process of the quantum algorithm is used to determine the entangled state in the decoding measurement. Compared with the previous schemes, the superpositions of two Bell-states are exploited. Our scheme is demonstrated using a nuclear magnetic resonance (NMR)quantum computer. The corresponding manipulations are obtained. Experimental results show a good agreement between theory and experiment. We also generalize the scheme to transmit eight messages by introducing an additional two-state system.展开更多
文摘The existence and multiplicity results are obtained for periodic solutions of second order systems at resonance with unbounded nonlinearity. The proofs rely on the minimax methods and an interesting integral inequality.
基金Supported by the National Natural Science Foundation of China(12001424)the Natural Science Basic Research Program of Shaanxi Province(2021JZ-21)the Fundamental Research Funds for the Central Universities(2020CBLY013)。
文摘Soliton molecules(SMs)of the(2+1)-dimensional generalized KonopelchenkoDubrovsky-Kaup-Kupershmidt(gKDKK)equation are found by utilizing a velocity resonance ansatz to N-soliton solutions,which can transform to asymmetric solitons upon assigning appropriate values to some parameters.Furthermore,a double-peaked lump solution can be constructed with breather degeneration approach.By applying a mixed technique of a resonance ansatz and conjugate complexes of partial parameters to multisoliton solutions,various kinds of interactional structures are constructed;There include the soliton molecule(SM),the breather molecule(BM)and the soliton-breather molecule(SBM).Graphical investigation and theoretical analysis show that the interactions composed of SM,BM and SBM are inelastic.
基金supported by the National Natural Science Foundation of China (project Nos. 11371086,11671258,11975145)the Fund of Science and Technology Commission of Shanghai Municipality (project No. 13ZR1400100)the Fund of Donghua University,Institute for Nonlinear Sciences and the Fundamental Research Funds for the Central Universities。
文摘Soliton molecules have become one of the hot topics in recent years. In this article, we investigate soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt(gKDKK) equation by using the velocity resonance, module resonance, and long wave limits methods. By selecting some specific parameters, we can obtain soliton molecules and asymmetric soliton molecules of the gKDKK equation. And the interactions among N-soliton molecules are elastic. Furthermore, some novel hybrid solutions of the gKDKK equation can be obtained, which are composed of lumps,breathers, soliton molecules and asymmetric soliton molecules. Finally, the images of soliton molecules and some novel hybrid solutions are given, and their dynamic behavior is analyzed.
文摘Adding a U(1) symmetry breaking term √V(λ1a0 + λ1*a0) + √V(λ2b0 + λ2*b0) to Bogoliubov's truncated Hamiltonian HB for a weakly interacting coupled Bose system, by using the mean-field approximation rather than the c-number approximation, we And that, via a Feshbach resonance at zero temperature, the states of the coupled Bose system are generalized SU(1,1) SU(1,1) coherent states. The Bose-Einstein condensation occurs in response to the spontaneous U(1) symmetry breaking.
基金The project supported by National Natural Science Foundation of Chain under Grant No. 10275025 and Natural Scicnce Foundation of Xiangfan University
文摘According to a linear equation of the laser intensity of single-mode laser with input signal, we compute the generalized signal-to-noise ratio (GSNR) in the instantaneous-state of the single-mode laser, which is driven by two colored noises and correlated in the form of an e-exponential function. We detect that the stochastic resonance (SR) also occurs on instantaneous state at any time. Furthermore we discuss the GSNR trend to stable state in three different forms when taking different signal frequencies.
基金The project supported by the Research Fund for the Doctoral Program of Higher Education under Grant No. 2002610001 and the National Natural Science Foundation of China under Grant No. 60054402
文摘A photoionization cross section calculation ofMn^+ is performed in the formalism of many-body perturbation theory for photon energies ranging from 48 eV to 56 eV. We consider excitations from the 3p, 3d, and 4s subshells. The effects of the strong 3p→ 3d and 3p→ 4s transitions are included as resonant contributions to the total cross sections. Good agreement with experiment is found.
基金We are grateful to Professor Long Guilu and Mr.Liu Xiaoshu for helpful discussions.This work was supported by the National Natural Science Foundation of China(Grant No.10374010)the China Postdoctoral Science Foundation.
文摘Dense coding using superpositions of Bell-states is proposed. The generalized Grover's algorithm is used to prepare the initial entangled states, and the reverse process of the quantum algorithm is used to determine the entangled state in the decoding measurement. Compared with the previous schemes, the superpositions of two Bell-states are exploited. Our scheme is demonstrated using a nuclear magnetic resonance (NMR)quantum computer. The corresponding manipulations are obtained. Experimental results show a good agreement between theory and experiment. We also generalize the scheme to transmit eight messages by introducing an additional two-state system.