We characterize the boundedness and compactness of the product of extended Cesaro operator and composition operator TgCφ from generalized Besov spaces to Zygmund spaces, where g is a given holomorphic function in the...We characterize the boundedness and compactness of the product of extended Cesaro operator and composition operator TgCφ from generalized Besov spaces to Zygmund spaces, where g is a given holomorphic function in the unit disk D, φ is an analytic self-map of Ii) and TgC~ is defined byTgCφf(z)=∫z 0 f(φ(t))g′(t)dt.展开更多
In this paper, we proof some properties of the space of bounded p(·)-variation in Wiener’s sense. We show that a functions is of bounded p(·)-variation in Wiener’s sense with variable exponent if and only ...In this paper, we proof some properties of the space of bounded p(·)-variation in Wiener’s sense. We show that a functions is of bounded p(·)-variation in Wiener’s sense with variable exponent if and only if it is the composition of a bounded nondecreasing functions and h?lderian maps of the variable exponent. We show that the composition operator H, associated with , maps the spaces into itself if and only if h is locally Lipschitz. Also, we prove that if the composition operator generated by maps this space into itself and is uniformly bounded, then the regularization of h is affine in the second variable.展开更多
In this paper we present the notion of the space of bounded p(·)-variation in the sense of Wiener-Korenblum with variable exponent. We prove some properties of this space and we show that the composition operator...In this paper we present the notion of the space of bounded p(·)-variation in the sense of Wiener-Korenblum with variable exponent. We prove some properties of this space and we show that the composition operator H, associated with , maps the into itself, if and only if h is locally Lipschitz. Also, we prove that if the composition operator generated by maps this space into itself and is uniformly bounded, then the regularization of h is affine in the second variable, i.e. satisfies the Matkowski’s weak condition.展开更多
In this paper we establish the notion of the space of bounded ?(p(⋅), 2)variation in De la Vallée Poussin-Wiener’s sense with variable exponent. We show some properties of this space and we show that an...In this paper we establish the notion of the space of bounded ?(p(⋅), 2)variation in De la Vallée Poussin-Wiener’s sense with variable exponent. We show some properties of this space and we show that any uniformly bounded composition operator that maps this space into itself necessarily satisfies the so-called Matkowski’s conditions.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(10771064) Supported by the Natural Science Foundation of Zhejiang Province(YT080197, Y6090036, Y6100219) Supported by the Foundation of Creative Group in Colleges and Universities of Zhejiang Province(T200924) Acknowledgement The author would like to express his thanks to his supervisor, Prof HU Zhang-jian, for his guidence.
文摘We characterize the boundedness and compactness of the product of extended Cesaro operator and composition operator TgCφ from generalized Besov spaces to Zygmund spaces, where g is a given holomorphic function in the unit disk D, φ is an analytic self-map of Ii) and TgC~ is defined byTgCφf(z)=∫z 0 f(φ(t))g′(t)dt.
文摘In this paper, we proof some properties of the space of bounded p(·)-variation in Wiener’s sense. We show that a functions is of bounded p(·)-variation in Wiener’s sense with variable exponent if and only if it is the composition of a bounded nondecreasing functions and h?lderian maps of the variable exponent. We show that the composition operator H, associated with , maps the spaces into itself if and only if h is locally Lipschitz. Also, we prove that if the composition operator generated by maps this space into itself and is uniformly bounded, then the regularization of h is affine in the second variable.
文摘In this paper we present the notion of the space of bounded p(·)-variation in the sense of Wiener-Korenblum with variable exponent. We prove some properties of this space and we show that the composition operator H, associated with , maps the into itself, if and only if h is locally Lipschitz. Also, we prove that if the composition operator generated by maps this space into itself and is uniformly bounded, then the regularization of h is affine in the second variable, i.e. satisfies the Matkowski’s weak condition.
文摘In this paper we establish the notion of the space of bounded ?(p(⋅), 2)variation in De la Vallée Poussin-Wiener’s sense with variable exponent. We show some properties of this space and we show that any uniformly bounded composition operator that maps this space into itself necessarily satisfies the so-called Matkowski’s conditions.
基金Supported by the National Natural Science Foundation of China(11201323)the Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing(2013QZJ01)the Introduction of Talent Project of SUSE(2014RC04)