The progress made fi'om Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmosph...The progress made fi'om Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmospheric general circulation models (AGCMs). The majority of the models overestimated the precipitation over the SPR domain, with the mean latitude of the SPR belt shifting to the north. The overestimation was about 1mm d-1 in the CMIP3 ensemble, and the northward displacement was about 3°, while in the CMIP5 ensemble the overestimation was suppressed to 0.7 mm d-i and the northward shift decreased to 2.5°. The SPR features a northeast-southwest extended rain belt with a slope of 0.4°N/°E. The CMIP5 ensemble yielded a smaller slope (0.2°N/°E), whereas the CMIP3 ensemble featured an unre- alistic zonally-distributed slope. The CMIP5 models also showed better skill in simulating the interannual variability of SPR. Previous studies have suggested that the zonal land-sea thermal contrast and sensible heat flux over the southeastern Tibetan Plateau are important for the existence of SPR. These two ther- mal factors were captured well in the CMIP5 ensemble, but underestimated in the CMIP3 ensemble. The variability of zonal land-sea thermal contrast is positively correlated with the rainfall amount over the main SPR center, but it was found that an overestimated thermal contrast between East Asia and South China Sea is a common problem in most of the CMIP3 and CMIP5 models. Simulation of the meridional thermal contrast is therefore important for the future improvement of current AGCMs.展开更多
基金jointly supported by the Major State Basic Research Development Program of China(973 Program)under Grant No.2010CB951903the National Natural Science Foundation of China under grant Nos.41205043,41105054 and 40890054China Meteorological Administration(GYHY201306062)
文摘The progress made fi'om Phase 3 to Phase 5 of the Coupled Model Intercomparison Project (CMIP3 to CMIP5) in simulating spring persistent rainfall (SPR) over East Asia was examined from the outputs of nine atmospheric general circulation models (AGCMs). The majority of the models overestimated the precipitation over the SPR domain, with the mean latitude of the SPR belt shifting to the north. The overestimation was about 1mm d-1 in the CMIP3 ensemble, and the northward displacement was about 3°, while in the CMIP5 ensemble the overestimation was suppressed to 0.7 mm d-i and the northward shift decreased to 2.5°. The SPR features a northeast-southwest extended rain belt with a slope of 0.4°N/°E. The CMIP5 ensemble yielded a smaller slope (0.2°N/°E), whereas the CMIP3 ensemble featured an unre- alistic zonally-distributed slope. The CMIP5 models also showed better skill in simulating the interannual variability of SPR. Previous studies have suggested that the zonal land-sea thermal contrast and sensible heat flux over the southeastern Tibetan Plateau are important for the existence of SPR. These two ther- mal factors were captured well in the CMIP5 ensemble, but underestimated in the CMIP3 ensemble. The variability of zonal land-sea thermal contrast is positively correlated with the rainfall amount over the main SPR center, but it was found that an overestimated thermal contrast between East Asia and South China Sea is a common problem in most of the CMIP3 and CMIP5 models. Simulation of the meridional thermal contrast is therefore important for the future improvement of current AGCMs.