A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinite...A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.展开更多
基于统计型积分方程方法(Stochastic Integral Equation Method,SIEM)实现了高斯粗糙面的高效散射计算.与传统求解随机粗糙面散射特性的蒙特卡洛法(Monte Carlo Method,MC)相比,该方法采用统计面元格林函数,考虑粗糙面高斯随机分布的场...基于统计型积分方程方法(Stochastic Integral Equation Method,SIEM)实现了高斯粗糙面的高效散射计算.与传统求解随机粗糙面散射特性的蒙特卡洛法(Monte Carlo Method,MC)相比,该方法采用统计面元格林函数,考虑粗糙面高斯随机分布的场源耦合影响,只需要计算一次矩阵元素和待求未知量,提高了求解粗糙面问题的计算效率.数值结果显示,文中方法与MC吻合,计算效率得到显著提高.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.
基金Supported bythe National Natural Science Foundation of China(Grant No.60571058)Specialized Research Fundfor the Doctoral Program of Higher Education(Grant No.20070701010)
文摘基于统计型积分方程方法(Stochastic Integral Equation Method,SIEM)实现了高斯粗糙面的高效散射计算.与传统求解随机粗糙面散射特性的蒙特卡洛法(Monte Carlo Method,MC)相比,该方法采用统计面元格林函数,考虑粗糙面高斯随机分布的场源耦合影响,只需要计算一次矩阵元素和待求未知量,提高了求解粗糙面问题的计算效率.数值结果显示,文中方法与MC吻合,计算效率得到显著提高.