Background Blood glucose control improves the outcome of diabetic patients with stroke, but the target range of blood glucose control remains controversial. The functional recruitment of ischemia penumbra is extremely...Background Blood glucose control improves the outcome of diabetic patients with stroke, but the target range of blood glucose control remains controversial. The functional recruitment of ischemia penumbra is extremely important to the recovery after stroke. The present study aimed to explore the expression of brain-type glucose transporters (GLUT1 and GLUT3) in cerebral ischemic penumbra at different blood glucose levels and different ischemic-reperfusion time in diabetic hypoxia-ischemia rats. The results might provide an experimental basis for clinical treatment of diabetic patients with stroke. Methods The Wistar rats included in this study were randomly assigned to 4 groups (50 rats each): normal control group (NC), uncontrolled diabetic group (DM1), poorly-controlled diabetic group (DM2), and well-controlled diabetic group (DM3). Diabetic rats were induced by single intraperitoneal injection of streptozotocin, and the focal ischemic rat model of middle artery occlusion (MCAO) was made by insertion of fishing thread in 6 weeks after the establishment of the diabetic model. Each group was divided into 5 subgroups (10 rats each): four focal ischemic subgroups at different ischemic-reperfusion time (at 3,12, 24 and 72 hours after reperfusion, respectively) and one sham-operated subgroup. The mRNA and protein expression of GLUT1 and GLUT3 was assessed by RT-PCR and Western blotting, respectively. Results There was significant difference in the mRNA expression of GLUT1 and GLUT3 between the four focal ischemic subgroups and the sham-operated subgroup at different reperfusion time in each group. The mRNA expression of GLUT1 and GLUT3 in the 4 ischemic groups began to increase at 3 hours, peaked at 24 hours after reperfusion and maintained at a higher level even at 72 hours compared with that of the sham-operated subgroup. The mRNA expression of GLUT1 increased more significantly than that of GLUT3. The mRNA expression of GLUT1 and GLUT3 was significantly different between the展开更多
文摘Background Blood glucose control improves the outcome of diabetic patients with stroke, but the target range of blood glucose control remains controversial. The functional recruitment of ischemia penumbra is extremely important to the recovery after stroke. The present study aimed to explore the expression of brain-type glucose transporters (GLUT1 and GLUT3) in cerebral ischemic penumbra at different blood glucose levels and different ischemic-reperfusion time in diabetic hypoxia-ischemia rats. The results might provide an experimental basis for clinical treatment of diabetic patients with stroke. Methods The Wistar rats included in this study were randomly assigned to 4 groups (50 rats each): normal control group (NC), uncontrolled diabetic group (DM1), poorly-controlled diabetic group (DM2), and well-controlled diabetic group (DM3). Diabetic rats were induced by single intraperitoneal injection of streptozotocin, and the focal ischemic rat model of middle artery occlusion (MCAO) was made by insertion of fishing thread in 6 weeks after the establishment of the diabetic model. Each group was divided into 5 subgroups (10 rats each): four focal ischemic subgroups at different ischemic-reperfusion time (at 3,12, 24 and 72 hours after reperfusion, respectively) and one sham-operated subgroup. The mRNA and protein expression of GLUT1 and GLUT3 was assessed by RT-PCR and Western blotting, respectively. Results There was significant difference in the mRNA expression of GLUT1 and GLUT3 between the four focal ischemic subgroups and the sham-operated subgroup at different reperfusion time in each group. The mRNA expression of GLUT1 and GLUT3 in the 4 ischemic groups began to increase at 3 hours, peaked at 24 hours after reperfusion and maintained at a higher level even at 72 hours compared with that of the sham-operated subgroup. The mRNA expression of GLUT1 increased more significantly than that of GLUT3. The mRNA expression of GLUT1 and GLUT3 was significantly different between the