We examined the scale impacts on spatial hot and cold spots of CPUE for Ommastrephes bartramii in the northwest Pacific Ocean. The original fishery data were tessellated to 18 spatial scales from 5′×5′ to 90′&...We examined the scale impacts on spatial hot and cold spots of CPUE for Ommastrephes bartramii in the northwest Pacific Ocean. The original fishery data were tessellated to 18 spatial scales from 5′×5′ to 90′×90′ with a scale interval of 5′ to identify the local clusters. The changes in location, boundaries, and statistics regarding the Getis-Ord Gi* hot and cold spots in response to the spatial scales were analyzed in detail. Several statistics including Min, mean, Max, SD, CV, skewness, kurtosis, first quartile(Q1), median, third quartile(Q3), area and centroid were calculated for spatial hot and cold spots. Scaling impacts were examined for the selected statistics using linear, logarithmic, exponential, power law and polynomial functions. Clear scaling relations were identified for Max, SD and kurtosis for both hot and cold spots. For the remaining statistics, either a difference of scale impacts was found between the two clusters, or no clear scaling relation was identified. Spatial scales coarser than 30′ are not recommended to identify the local spatial patterns of fisheries because the boundary and locations of hot and cold spots at a coarser scale are significantly different from those at the original scale.展开更多
Spatial-explicitly mapping of the hotspots and coldspots is a vital link in the priority setting for ecosystem services (ES) conservation. However, little research has identified and tested the compactness and effic...Spatial-explicitly mapping of the hotspots and coldspots is a vital link in the priority setting for ecosystem services (ES) conservation. However, little research has identified and tested the compactness and efficiency of their ES hotspots and coldspots, which may weaken the effectiveness of ecological conservation. In this study, based on the RUSLE model and Getis-Ord Gi* statistics, we quantified the variation of annual soil conservation services (SC) and identified the statistically significant hotspots and coldspots in Shaanxi Province of China from 2000 to 2013. The results indicate that, 1) areas with high SC presented a significantly increasing trend as well, while areas with low SC only changed slightly; 2) SC hotspots and coldspots showed an obvious spatial differentiation--the hotspots were mainly spatially ag- gregated in southern Shaanxi, while the coldspots were mainly distributed in the Guanzhong Basin and Sand-windy Plateau; and 3) the identified hotspots had the highest capacity of providing SC, with 29.6% of the total area providing 59.7% of the total service. In contrast, the coldspots occupied 46.3% of the total area, but only provided 17.2% of the total SC. In addition to conserving single ES, the Getis-Ord Gi* statistics method can also help identify multi-functional priority areas for conserving multiple ES and biodiversity.展开更多
Since 2014, China has been implementing the Sponge City Construction initiative, which represents an enormous and unprecedented effort by any government in the world for achieving urban sustainability. According to pr...Since 2014, China has been implementing the Sponge City Construction initiative, which represents an enormous and unprecedented effort by any government in the world for achieving urban sustainability. According to preliminary estimates, the total investment on the Sponge City Plan is roughly 100 to 150 million Yuan (RMB) ($15 to $22.5 million) average per square kilometer or 10 Trillion Yuan (RMB) ($1.5 Trillion) for the 657 cities nationwide. The Sponge City Plan (SCP) calls for the use of natural processes such as soil and vegetation as part of the urban runoff control strategy, which is similar to that of low impact development (LID) and green infrastructure (G1) practices being promoted in many parts of the world. The SCP includes as its goals not only effective urban flood control, but also rainwater harvest, water quality improvement and ecological restoration. So far, the SCP implementation has encountered-some barriers and challenges due to many factors. The present paper presents a review of those barriers and challenges, oftizrs discussions and recommendations on several technical aspects such as control goals and objectives; planning/design and construction of LID/GI practices; performance evaluation. Several key recommendations are proposed on Sponge City implementation strategy, Site-specific regulatory fi'amework and technical gmdance, Product innovation and certification, LID/GI Project financing, LID/G1 profcssional training and certification, public outreach and education. It is expected that the successful implemen!atiun of the. SCP not only will bring about a sustainable, eco-friendly urbanization process in China, but also contribute enormously to the LID/Gl research and development with the vast amount of relevant data and experiences generated from the Sponge City construction projects.展开更多
基金The National Natural Science Foundation of China under contract No.41406146the Open Fund from Laboratory for Marine Fisheries Science and Food Production Processes at Qingdao National Laboratory for Marine Science and Technology of China under contract No.2017-1A02Shanghai Universities First-class Disciplines Project-Fisheries(A)
文摘We examined the scale impacts on spatial hot and cold spots of CPUE for Ommastrephes bartramii in the northwest Pacific Ocean. The original fishery data were tessellated to 18 spatial scales from 5′×5′ to 90′×90′ with a scale interval of 5′ to identify the local clusters. The changes in location, boundaries, and statistics regarding the Getis-Ord Gi* hot and cold spots in response to the spatial scales were analyzed in detail. Several statistics including Min, mean, Max, SD, CV, skewness, kurtosis, first quartile(Q1), median, third quartile(Q3), area and centroid were calculated for spatial hot and cold spots. Scaling impacts were examined for the selected statistics using linear, logarithmic, exponential, power law and polynomial functions. Clear scaling relations were identified for Max, SD and kurtosis for both hot and cold spots. For the remaining statistics, either a difference of scale impacts was found between the two clusters, or no clear scaling relation was identified. Spatial scales coarser than 30′ are not recommended to identify the local spatial patterns of fisheries because the boundary and locations of hot and cold spots at a coarser scale are significantly different from those at the original scale.
基金National Natural Science Foundation of China, No.41601182 National Social Science Foundation of China, No.14AZD094+3 种基金 National Key Research and Development Plan of China, No.2016YFC0501601 China Postdoctoral Science Foundation, No.2016M592743 Fundamental Research Funds for the Central Universities, No.GK201603078 Key Project of the Ministry of Education of China, No. 15JJD790022Acknowledgments We are grateful to the anonymous reviewers for their constructive advice about the paper, and we also thank Chen Guoyong from the Hunan University, who provided important aid in calculating the annual soil conservation of Shaanxi by MATLAB programming.
文摘Spatial-explicitly mapping of the hotspots and coldspots is a vital link in the priority setting for ecosystem services (ES) conservation. However, little research has identified and tested the compactness and efficiency of their ES hotspots and coldspots, which may weaken the effectiveness of ecological conservation. In this study, based on the RUSLE model and Getis-Ord Gi* statistics, we quantified the variation of annual soil conservation services (SC) and identified the statistically significant hotspots and coldspots in Shaanxi Province of China from 2000 to 2013. The results indicate that, 1) areas with high SC presented a significantly increasing trend as well, while areas with low SC only changed slightly; 2) SC hotspots and coldspots showed an obvious spatial differentiation--the hotspots were mainly spatially ag- gregated in southern Shaanxi, while the coldspots were mainly distributed in the Guanzhong Basin and Sand-windy Plateau; and 3) the identified hotspots had the highest capacity of providing SC, with 29.6% of the total area providing 59.7% of the total service. In contrast, the coldspots occupied 46.3% of the total area, but only provided 17.2% of the total SC. In addition to conserving single ES, the Getis-Ord Gi* statistics method can also help identify multi-functional priority areas for conserving multiple ES and biodiversity.
基金We gratefully acknowledge financial support from the Beijing Natural Science Foundation Project (No. 8161003), Natural Science Foundation Project (No. 51278267), and the National Water Pollution Control Special Project (No. 2011ZX07301-003). Several points and the contents in the manuscript are discussed with many experts during 2016 International Low Impact Conference in Beijing.
文摘Since 2014, China has been implementing the Sponge City Construction initiative, which represents an enormous and unprecedented effort by any government in the world for achieving urban sustainability. According to preliminary estimates, the total investment on the Sponge City Plan is roughly 100 to 150 million Yuan (RMB) ($15 to $22.5 million) average per square kilometer or 10 Trillion Yuan (RMB) ($1.5 Trillion) for the 657 cities nationwide. The Sponge City Plan (SCP) calls for the use of natural processes such as soil and vegetation as part of the urban runoff control strategy, which is similar to that of low impact development (LID) and green infrastructure (G1) practices being promoted in many parts of the world. The SCP includes as its goals not only effective urban flood control, but also rainwater harvest, water quality improvement and ecological restoration. So far, the SCP implementation has encountered-some barriers and challenges due to many factors. The present paper presents a review of those barriers and challenges, oftizrs discussions and recommendations on several technical aspects such as control goals and objectives; planning/design and construction of LID/GI practices; performance evaluation. Several key recommendations are proposed on Sponge City implementation strategy, Site-specific regulatory fi'amework and technical gmdance, Product innovation and certification, LID/GI Project financing, LID/G1 profcssional training and certification, public outreach and education. It is expected that the successful implemen!atiun of the. SCP not only will bring about a sustainable, eco-friendly urbanization process in China, but also contribute enormously to the LID/Gl research and development with the vast amount of relevant data and experiences generated from the Sponge City construction projects.