Polyurethane is a versatile plastic with several industrial applications in the modern life, but it is considered as a very recalcitrant material. Biodegradation of this plastic has been poorly explored, and most of t...Polyurethane is a versatile plastic with several industrial applications in the modern life, but it is considered as a very recalcitrant material. Biodegradation of this plastic has been poorly explored, and most of the studies that have been published focus on bacterial enzymes. In this work, some fungi with the capacity of growing with polyurethane foam as nutrient source were isolated from sands contaminated with this plastic and from DIA/UAdeC collection, testing their ability to grow on polyurethane as sole carbon and nitrogen sources and their enzymatic activities were determined in specific media as well as their invasion capacity on polyurethane agar plates. 22 fungal strains demonstrated their capacity of growing on polyurethane. Among the enzymatic activities evaluate, the most common was the urease activity (95% of the strains).Protease, esterase and laccase activities were present in 86%, 50% and 36% respectively. The great ability of the isolated fungal strains to use polyurethane foam as nutrient opens an important opportunity to study at detail the biodegradation of this plastic, with clear implications in cell biology and environmental technology.展开更多
Foliar diseases are common in most maize-producing regions and have caused serious yield reduction in China. To evaluate genetic resistance of parental lines actively used in maize breeding programs to major foliar di...Foliar diseases are common in most maize-producing regions and have caused serious yield reduction in China. To evaluate genetic resistance of parental lines actively used in maize breeding programs to major foliar diseases, 152 maize inbred lines were tested against northern corn leaf blight(NCLB), southern corn leaf blight(SCLB), Curvularia leaf spot(CLS),gray leaf spot(GLS), common rust, and southern rust from 2003 to 2005. A small number of lines exhibited highly resistant reactions to common rust and southern rust, but none were highly resistant to NCLB, SCLB, CLS, and GLS. Although 53.3%, 40.8%, and 80.7% of lines were resistant to NCLB, SCLB, and common rust, the resistance in most lines was moderate.Resistance to CLS, GLS, and southern rust was rare in this collection of maize lines. Five lines,313, Chang 7-2, Qi 319, Qi 318, and Shen 137, were resistant to five diseases tested. Lines belonging to heterotic subgroup PB exhibited better resistance to the foliar diseases than lines from other heterotic subgroups, such as BSSS, PA, Lancaster, LRC, and PA. The results will be of benefit to breeders for selecting lines in disease resistance breeding programs.展开更多
基金CISEF for fungal strains and Consejo Nacional de Ciencia y Tecnología(CONACYT)for the student grant(258623/221603).
文摘Polyurethane is a versatile plastic with several industrial applications in the modern life, but it is considered as a very recalcitrant material. Biodegradation of this plastic has been poorly explored, and most of the studies that have been published focus on bacterial enzymes. In this work, some fungi with the capacity of growing with polyurethane foam as nutrient source were isolated from sands contaminated with this plastic and from DIA/UAdeC collection, testing their ability to grow on polyurethane as sole carbon and nitrogen sources and their enzymatic activities were determined in specific media as well as their invasion capacity on polyurethane agar plates. 22 fungal strains demonstrated their capacity of growing on polyurethane. Among the enzymatic activities evaluate, the most common was the urease activity (95% of the strains).Protease, esterase and laccase activities were present in 86%, 50% and 36% respectively. The great ability of the isolated fungal strains to use polyurethane foam as nutrient opens an important opportunity to study at detail the biodegradation of this plastic, with clear implications in cell biology and environmental technology.
基金Financial support provided by the Ministry of Agriculture of China (No. 2003-Q03) is gratefully appreciated
文摘Foliar diseases are common in most maize-producing regions and have caused serious yield reduction in China. To evaluate genetic resistance of parental lines actively used in maize breeding programs to major foliar diseases, 152 maize inbred lines were tested against northern corn leaf blight(NCLB), southern corn leaf blight(SCLB), Curvularia leaf spot(CLS),gray leaf spot(GLS), common rust, and southern rust from 2003 to 2005. A small number of lines exhibited highly resistant reactions to common rust and southern rust, but none were highly resistant to NCLB, SCLB, CLS, and GLS. Although 53.3%, 40.8%, and 80.7% of lines were resistant to NCLB, SCLB, and common rust, the resistance in most lines was moderate.Resistance to CLS, GLS, and southern rust was rare in this collection of maize lines. Five lines,313, Chang 7-2, Qi 319, Qi 318, and Shen 137, were resistant to five diseases tested. Lines belonging to heterotic subgroup PB exhibited better resistance to the foliar diseases than lines from other heterotic subgroups, such as BSSS, PA, Lancaster, LRC, and PA. The results will be of benefit to breeders for selecting lines in disease resistance breeding programs.