Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking p...Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods.展开更多
目前的宽度学习系统(Broad learning system,BLS)通过所建立的一系列映射节点和增强节点来形成联合节点。因为联合节点与输出层的线性连接,网络权值可以用求解伪逆的方法快速求得,避免了耗时的训练过程,从而成为快速而高效的学习方法。...目前的宽度学习系统(Broad learning system,BLS)通过所建立的一系列映射节点和增强节点来形成联合节点。因为联合节点与输出层的线性连接,网络权值可以用求解伪逆的方法快速求得,避免了耗时的训练过程,从而成为快速而高效的学习方法。然而在追求高精度结果的过程中,BLS对于增强节点数量的需求过于巨大,容易造成过拟合问题。为此,本文提出了基于函数链神经网络(Functional⁃link neural network,FLNN)的深度分类器(FLNN based deep classifier,FLNNDC),旨在提供一种更加简单却又不失精度的BLS变体结构。FLNNDC将几个轻量级的BLS子系统堆积成栈式结构,每一个轻量级的BLS子系统随机选择一部分映射节点生成增强节点,而不是全部映射节点。和原宽度结构相比,在几个主流数据集上的实验结果表明本文所提出的FLNNDC分类器具有网络结构更小且学习速度更快的优势。展开更多
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced...This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method.展开更多
In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced....In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data.So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network.The nonlinear model has the advantages of strong robustness,on-line scaling and high precision.The maximum nonlinearity error can be reduced to 0.037% using GNN.However,the maximum nonlinearity error is 0.075% using least square method (LMS).展开更多
基金Item Sponsored by National Natural Science Foundation of China(61290323,61333007,61473064)Fundamental Research Funds for Central Universities of China(N130108001)+1 种基金National High Technology Research and Development Program of China(2015AA043802)General Project on Scientific Research for Education Department of Liaoning Province of China(L20150186)
文摘Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods.
文摘目前的宽度学习系统(Broad learning system,BLS)通过所建立的一系列映射节点和增强节点来形成联合节点。因为联合节点与输出层的线性连接,网络权值可以用求解伪逆的方法快速求得,避免了耗时的训练过程,从而成为快速而高效的学习方法。然而在追求高精度结果的过程中,BLS对于增强节点数量的需求过于巨大,容易造成过拟合问题。为此,本文提出了基于函数链神经网络(Functional⁃link neural network,FLNN)的深度分类器(FLNN based deep classifier,FLNNDC),旨在提供一种更加简单却又不失精度的BLS变体结构。FLNNDC将几个轻量级的BLS子系统堆积成栈式结构,每一个轻量级的BLS子系统随机选择一部分映射节点生成增强节点,而不是全部映射节点。和原宽度结构相比,在几个主流数据集上的实验结果表明本文所提出的FLNNDC分类器具有网络结构更小且学习速度更快的优势。
基金Project supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,Chinathe Foundation of Huaiyin Teachers College Professor,China(Grant Nos07KJD510027 and 06HSJS020)
文摘This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method.
文摘In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data.So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network.The nonlinear model has the advantages of strong robustness,on-line scaling and high precision.The maximum nonlinearity error can be reduced to 0.037% using GNN.However,the maximum nonlinearity error is 0.075% using least square method (LMS).