期刊文献+

基于模糊自适应变权重算法的函数链神经网络预测方法 被引量:8

Functional link neural network forecasting method based on fuzzy adaptive variable weight algorithm
下载PDF
导出
摘要 为提高复杂工业系统非线性时间序列预测精度,将工业系统非线性时间序列不同的单个预测模型预测值作为函数链神经网络的原始输入值,并将原始输入值按正交的三角函数扩展得到的数值作为函数链神经网络扩展输入值,在分析函数链神经网络拟合充要条件的基础上,结合模糊自适应变权重算法计算函数链神经网络权重,建立基于模糊自适应变权重算法的函数链神经网络预测模型。研究结果表明:基于模糊自适应变权重算法的函数链神经网络预测方法的预测精度较高,并且平均误差和预测平方根误差均较小,具有较强的泛化能力;该模糊自适应变权重函数链神经网络预测模型可用于复杂非线性工业系统决策。 In order to enhance forecasting precision problem about nonlinear time series in complex industry system,a functional link neural network forecasting model was established based on fuzzy adaptive variable weight algorithm by using of making some forecasting values from different single forecasting models of nonlinear time series in complex industry system as original input values of functional link neural network,making the original input values as patulous input values of functional link neural network after the original input values being extended according to orthogonal trigonometric function,analyzing necessary and sufficient conditions of functional link neural network fitting and calculating the weight of functional link neural network based on fuzzy adaptive variable weight algorithm.The simulation analysis results and forecasting results of the severe harm rate in some mine reveal that the functional link neural network forecasting method based on fuzzy adaptive variable weight algorithm has higher accuracy than that of every single combined forecasting model or other forecasting model.The functional link neural network forecasting is of good extensive capability and is very useful for requirement decision in complex industry system.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第9期2812-2818,共7页 Journal of Central South University:Science and Technology
基金 国家"十一五"科技支撑计划项目(2007BAK22B04-12 2006BAB02B05-01-02-01)
关键词 函数链神经网络 模糊自适应变权重算法 预测 模糊 神经网络 functional link neural network fuzzy adaptive variable weight algorithm forecast fuzzy neural network
  • 相关文献

参考文献15

  • 1程卫民,苏绍桂,辛嵩.系统安全性预测模型与系统的建立[J].辽宁工程技术大学学报(自然科学版),2003,22(4):533-535. 被引量:5
  • 2曾康生,胡乃联.煤矿系统安全预测模型与组合预测[J].煤炭学报,2008,33(10):1122-1125. 被引量:21
  • 3刘素兵..组合预测模型的构建及其应用[D].西安理工大学,2008:
  • 4Bates J M, Granger C W J. Combination of forecasts[J]. Operations Research Quarterly, 1969, 20(4): 451-468. 被引量:1
  • 5Aksu C, Gunter S I. An empirical analysis of the accuracy of SA, OLS, ERLS and NRLS combination forecasts[J]. International Journal of Forecasting, 1992, 8(1): 27-43. 被引量:1
  • 6Harvey N, Harries C. Effects of judges' forecasting on their later combination of forecasts for the same outcomes[J]. International Journal of Forecasting, 2004, 20(3): 391-409. 被引量:1
  • 7Palit A K, Popovic D. Nonlinear combination of forecasts using artificial neural network[C]//Proceedings of 2000 the Ninth IEEE International Conference on Fuzzy Systems. San Antonio: The IEEE Neural Networks Council, 2000: 566-571. 被引量:1
  • 8ZOU Hui, YANG Yu-hong. Combining time series models for forecasting[J]. International Journal of Forecasting, 2004, 20(1): 69-84. 被引量:1
  • 9Tang X W, Zhou Z F, Shi Y. The variable weighted functions of combined forecasting[J]. Computers & Mathematics with Application, 2003, 45(4/5): 723-730. 被引量:1
  • 10陈瑜,张起森.Application of functional-link neural network in evaluation of sublayer suspension based on FWD test[J].Journal of Central South University of Technology,2004,11(2):225-228. 被引量:7

二级参考文献42

共引文献47

同被引文献86

引证文献8

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部