The magneto-electric coupling and magneto-capacitance effect of a layer composite ferromagnet/ piezoelectric/ferromagnet was investigated. Several resonant peaks were observed on the curves of the capacitance versus f...The magneto-electric coupling and magneto-capacitance effect of a layer composite ferromagnet/ piezoelectric/ferromagnet was investigated. Several resonant peaks were observed on the curves of the capacitance versus frequency. The resonant peaks were found to shift under an applied magnetic field, and the impedance of the sample can be changed from capacitive to inductive ones with changing the field. Thus, giant negative and positive magneto-capacitance effects can be observed simultaneously under a magnetic field less than 1 k Oe near the resonant points. Experimental and theoretical analysis showed that such magnetically tuned variation in impedance originates from the magnetic field-induced change of the compliances of the magnetic phase of the composite.展开更多
文摘The magneto-electric coupling and magneto-capacitance effect of a layer composite ferromagnet/ piezoelectric/ferromagnet was investigated. Several resonant peaks were observed on the curves of the capacitance versus frequency. The resonant peaks were found to shift under an applied magnetic field, and the impedance of the sample can be changed from capacitive to inductive ones with changing the field. Thus, giant negative and positive magneto-capacitance effects can be observed simultaneously under a magnetic field less than 1 k Oe near the resonant points. Experimental and theoretical analysis showed that such magnetically tuned variation in impedance originates from the magnetic field-induced change of the compliances of the magnetic phase of the composite.