In this article, we provide estimates for the degree of V bilipschitz determinacy of weighted homogeneous function germs defined on weighted homogeneous analytic variety V satisfying a convenient Lojasiewicz condition...In this article, we provide estimates for the degree of V bilipschitz determinacy of weighted homogeneous function germs defined on weighted homogeneous analytic variety V satisfying a convenient Lojasiewicz condition.The result gives an explicit order such that the geometrical structure of a weighted homogeneous polynomial function germs is preserved after higher order perturbations.展开更多
本文主要研究二元C~∞函数芽环中函数芽的性质问题.利用Mather有限决定性定理和C~∞函数的右等价关系,获得了带有任意4次至k次齐次多项式p_i(x,y),q_i(x,y)(i=4,5,···,k)k k的两类函数芽f_1=x^2y+sum from i=4 to k(p_i(...本文主要研究二元C~∞函数芽环中函数芽的性质问题.利用Mather有限决定性定理和C~∞函数的右等价关系,获得了带有任意4次至k次齐次多项式p_i(x,y),q_i(x,y)(i=4,5,···,k)k k的两类函数芽f_1=x^2y+sum from i=4 to k(p_i(x,y)),f_2=xy^2+sum from i=4 to k(q_i(x,y))(k≥5)的一个共同性质:若M_2~k?M_2J(f_j)(j=1,2)且f_1,f_2的轨道切空间的余维分布均为c_i=1(i=4,5,···,k-1),则对这里的i,p_i(x,y)中xy^(i-1),yi的系数和q_i(x,y)中x^(i-1)y,x^i的系数均为零.最后,利用该性质,给出了f_1,f_2和一类余维数为7的二元函数芽的标准形式.展开更多
Risler & Trotman in 1997 proved that the multiplicity of an analytic function germ is left-right lipschitz invariant, which provided a partial answer to Zariski conjecture. In this note, based on the recent work of C...Risler & Trotman in 1997 proved that the multiplicity of an analytic function germ is left-right lipschitz invariant, which provided a partial answer to Zariski conjecture. In this note, based on the recent work of Comte, Milman & Trotman, we generalize the work of them to prove that the multiplicity of a C^∞ differentiable function germ is also left-right lipschitz invariant.展开更多
基金Supported by the National Nature Science Foundation of China(10671009,60534080,10871149)
文摘In this article, we provide estimates for the degree of V bilipschitz determinacy of weighted homogeneous function germs defined on weighted homogeneous analytic variety V satisfying a convenient Lojasiewicz condition.The result gives an explicit order such that the geometrical structure of a weighted homogeneous polynomial function germs is preserved after higher order perturbations.
文摘本文主要研究二元C~∞函数芽环中函数芽的性质问题.利用Mather有限决定性定理和C~∞函数的右等价关系,获得了带有任意4次至k次齐次多项式p_i(x,y),q_i(x,y)(i=4,5,···,k)k k的两类函数芽f_1=x^2y+sum from i=4 to k(p_i(x,y)),f_2=xy^2+sum from i=4 to k(q_i(x,y))(k≥5)的一个共同性质:若M_2~k?M_2J(f_j)(j=1,2)且f_1,f_2的轨道切空间的余维分布均为c_i=1(i=4,5,···,k-1),则对这里的i,p_i(x,y)中xy^(i-1),yi的系数和q_i(x,y)中x^(i-1)y,x^i的系数均为零.最后,利用该性质,给出了f_1,f_2和一类余维数为7的二元函数芽的标准形式.
基金This work is supported by NNSFC under Grant Nos.10261002,10371047
文摘Risler & Trotman in 1997 proved that the multiplicity of an analytic function germ is left-right lipschitz invariant, which provided a partial answer to Zariski conjecture. In this note, based on the recent work of Comte, Milman & Trotman, we generalize the work of them to prove that the multiplicity of a C^∞ differentiable function germ is also left-right lipschitz invariant.