期刊文献+

两类二元函数芽的一个共同性质和其亚标准形式

A Common Property of Two Types of Function Germs with Two Variables and Their Mild Normal Forms
原文传递
导出
摘要 利用J.N.Mather有限决定性定理和光滑函数芽的右等价关系,给出了带有任意4次至k次齐次多项式p_i(x,y),q_i(x,y)(i=4,5,…,k)的两类二元函数芽f_i=x^3+∑_(i=4)~kp_i(x,y),f_2=y^3+∑_(i=4)~k=4q_i(x,y)(k≥5)的一个共同性质:若M_2~kM_2J(f_j)(j=1,2)且f_1,f_2的轨道切空间的余维分布均为c_i=2(i=4,5,…,k-1),则对这个i,p_i(x,y)中x^2y^(i-2),xy^(i-1),y^i的系数和q_i(x,y)中x^(i-2)y^2,x^(i-1)y,x^i的系数均为零.最后,利用该性质,给出了f_1,f_2和一类余维数为8的二元函数芽的亚标准形式. In this paper, Using the J. N. Mather's theorem of finite determinacy and right equivalence of functions in the theory of singularities, a common property of two types of function germs f1= x^3+Σ(i=4)~k pi(s,y) and f2= y^3+Σ(i=4)~k qi(s,y)(k≥5) with some arbitrary homogeneous polynomials pi(x,y) and qi(x,y)(i = 4,5, …,k) of degree from 4 to k is given.If M2~kM2J(fj)(j = 1,2) and the codimension distribution of tangent space of orbits for f1,f2 are both ci= 2(i = 4,5,…,k-1), the coefficients of x^2y^i-2,xy^i-1 and y^i in pi(x,y) are all zero, so are the coefficients of x^i-2y^2,x^(i-1)y and x^i in qi(x,y). Finally, by this property, the normal forms of f1, f2 and a class of function germs of two variables with codimension 8 are given.
出处 《数学的实践与认识》 北大核心 2017年第17期241-246,共6页 Mathematics in Practice and Theory
基金 贵州省科技厅联合基金(黔科合J字LKM[2013]35号 黔科合LH字[2014]7378)
关键词 二元函数芽 有限决定性 共同性质 亚标准形式 余维8 function germs of two variables finite determinacy common property mild normal form codimension 8
  • 相关文献

参考文献2

二级参考文献5

  • 1Martinet J. Singularities of Smooth Function and Maps[M]. London Mathematical Society Lecture Note Series 58, Cambridge Univ. Press, 1982. 被引量:1
  • 2Arnold V I, S.M.G, A.N.V. Singularities of Differentiable Maps[M], Vol(I). Brikhauser. Boston: Birkhauser, 1985. 被引量:1
  • 3Mather J N. Stability of C∞ mappings Ⅲ: Finitely determinacy map-germs[J]. Publ Math IHES, 1968, 35: 127-156. 被引量:1
  • 4Cen Yanming. An Application of Necessary and Sufficient Condition of Y-Equivalence[J]. Journal of Mathematical Research and Exposition, 1989, 9(4): 547-558. 被引量:1
  • 5王勇,孙伟志.余秩不等于2余维为7的可微函数芽的分类[J].东北师大学报(自然科学版),2001,33(4):12-15. 被引量:6

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部