摘要
利用J.N.Mather有限决定性定理和光滑函数芽的右等价关系,给出了带有任意4次至k次齐次多项式p_i(x,y),q_i(x,y)(i=4,5,…,k)的两类二元函数芽f_i=x^3+∑_(i=4)~kp_i(x,y),f_2=y^3+∑_(i=4)~k=4q_i(x,y)(k≥5)的一个共同性质:若M_2~kM_2J(f_j)(j=1,2)且f_1,f_2的轨道切空间的余维分布均为c_i=2(i=4,5,…,k-1),则对这个i,p_i(x,y)中x^2y^(i-2),xy^(i-1),y^i的系数和q_i(x,y)中x^(i-2)y^2,x^(i-1)y,x^i的系数均为零.最后,利用该性质,给出了f_1,f_2和一类余维数为8的二元函数芽的亚标准形式.
In this paper, Using the J. N. Mather's theorem of finite determinacy and right equivalence of functions in the theory of singularities, a common property of two types of function germs f1= x^3+Σ(i=4)~k pi(s,y) and f2= y^3+Σ(i=4)~k qi(s,y)(k≥5) with some arbitrary homogeneous polynomials pi(x,y) and qi(x,y)(i = 4,5, …,k) of degree from 4 to k is given.If M2~kM2J(fj)(j = 1,2) and the codimension distribution of tangent space of orbits for f1,f2 are both ci= 2(i = 4,5,…,k-1), the coefficients of x^2y^i-2,xy^i-1 and y^i in pi(x,y) are all zero, so are the coefficients of x^i-2y^2,x^(i-1)y and x^i in qi(x,y). Finally, by this property, the normal forms of f1, f2 and a class of function germs of two variables with codimension 8 are given.
出处
《数学的实践与认识》
北大核心
2017年第17期241-246,共6页
Mathematics in Practice and Theory
基金
贵州省科技厅联合基金(黔科合J字LKM[2013]35号
黔科合LH字[2014]7378)
关键词
二元函数芽
有限决定性
共同性质
亚标准形式
余维8
function germs of two variables
finite determinacy
common property
mild normal form
codimension 8