Thermochemical conversion of fuels via pyrolysis/carbonization,cracking,gasification and combustion has to involve a number of individual reactions called attribution reactions to form an intercorrelated reaction netw...Thermochemical conversion of fuels via pyrolysis/carbonization,cracking,gasification and combustion has to involve a number of individual reactions called attribution reactions to form an intercorrelated reaction network for any conversion process.By separating one or some attribution reactions from the others to decouple their interactions existing in the reaction network,the so-called reaction decoupling enables a better understanding of the complex thermal conversion process and further the optimization of the conditions for attribution reactions as well as the entire conversion process to realize advanced performances.The dual bed conversion and two-stage conversion are the two representative types of fuel conversion technologies developed in recent years based on reaction decoupling.Many technical advantages have been proven for such decoupling fuel conversion technologies,such as poly-generation of products,low-cost production of high-grade products,elimination of undesirable products or pollutants,easy operation and control,and so on.The treated fuels with decoupling conversion technologies mainly include solid biomass and coal,as well as liquid petroleum oil.This paper is devoted to reiteration of the reaction decoupling concept and further to reviewing the research,developments and successful applications of several decoupling fuel conversion technologies of two such types by using fluidized bed as their major reactors.展开更多
Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all oth...Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells.However,using solid carbon as the fuel of SOFCs also faces some challenges,the fluid mobility and reactive activity of carbon-based fuels are much lower than those of gaseous fuels.Therefore,the anode reaction kinetics plays a crucial role in determining the electrochemical performance of CF-SOFCs.Herein,the progress of various anodes in CF-SOFCs is reviewed from the perspective of material compositions,electrochemical performance and microstructures.Challenges faced in developing high performance anodes for CF-SOFCs are also discussed.展开更多
The persistent increase of CO_(2) levels in the atmosphere,already exceeding 400 ppm,urges the exploration of CO_(2) emission reduction and recycling technologies.Ideally,photocatalytic conversion of CO_(2) into valua...The persistent increase of CO_(2) levels in the atmosphere,already exceeding 400 ppm,urges the exploration of CO_(2) emission reduction and recycling technologies.Ideally,photocatalytic conversion of CO_(2) into valuable hydrocarbons realizes solar-to-chemical energy conversion,which is a desirable“kill two birds with one stone”strategy;namely,CO_(2) photoreduction can simultaneously tackle energy shortage and keep global carbon balance.Graphitic carbon nitride(g-C_(3)N_(4))working on CO_(2) reduction reaction deserves a highlight not only for the metal-free feature that endows it with low cost,tunable electronic structure,and easy fabrication properties but also because of its strong reduction ability.The present review concisely summarizes the latest advances of g-C_(3)N_(4)-based photocatalysts toward CO_(2) reduction.It starts with the discussion of thermodynamics and dynamics aspects of the CO_(2) reduction process.Then the modification strategies to promote g-C_(3)N_(4)-based photocatalysts in CO_(2) photoreduction have been discussed in detail,including surface functionalization,molecule structure engineering,crystallization,morphology engineering,loading cocatalyst,and constructing heterojunction.Meanwhile,the intrinsic factors affecting CO_(2) reduction activity and selectivity are analyzed and summarized.In the end,the challenges and prospects for the future development of highly g-C_(3)N_(4)-based photocatalysts in CO_(2) reduction are also presented.展开更多
High active and durable non-noble metal electrocatalysts are urgently developed to satisfy the high performance oxygen reduction reaction(ORR). We successfully synthesized Co-CoOx anchored on nitrogen-doped carbon via...High active and durable non-noble metal electrocatalysts are urgently developed to satisfy the high performance oxygen reduction reaction(ORR). We successfully synthesized Co-CoOx anchored on nitrogen-doped carbon via a facile sand-bath method(SBM), i.e., Co-CoOx/N-C(SBM). The as-obtained Co-CoOx/N-C(SBM) exhibited overwhelming superiorities to Co-CoO/N-C prepared by conventional heat treatment(CHT), particularly in electrochemical performance of ORR. Although Co-CoOx/N-C(SBM)showed smaller specific surface area of 276.8 m^2/g than that of 939.5 m^2/g from Co-CoO/N-C(CHT), the Co-CoOx/N-C(SBM) performed larger pore diameter and more Co_3O_4 active component resulting in better ORR performance in 0.1 mol/L KOH solution. The Co-CoO_x/N-C(SBM) delivered onset potential of 0.91 V vs. RHE, mid-wave potential of 0.85 V vs. RHE and limited current density of 5.46 mA/cm^2 much better than those of the Co-CoO/N-C(CHT). Furthermore, Co-CoOx/N-C(SBM) showed greater stability and better methanol tolerance superior to the commercial 20 wt% Pt/C.展开更多
Hydrogen is widely regarded as a sustainable energy carrier with tremendous potential for low-carbon energy transition.Solar photovoltaic-driven water electrolysis(PV-E)is a clean and sustainable approach of hydrogen ...Hydrogen is widely regarded as a sustainable energy carrier with tremendous potential for low-carbon energy transition.Solar photovoltaic-driven water electrolysis(PV-E)is a clean and sustainable approach of hydrogen production,but with major barriers of high hydrogen production costs and limited capacity.Steam methane reforming(SMR),the state-of-the-art means of hydrogen production,has yet to overcome key obstacles of high reaction temperature and CO_(2)emission for sustainability.This work proposes a solar thermo-electrochemical SMR approach,in which solar-driven mid/low-temperature SMR is combined with electrochemical H_(2)separation and in-situ CO_(2)capture.The feasibility of this method is verified experimentally,achieving an average methane conversion of 96.8%at a dramatically reduced reforming temperature of 400-500℃.The underlying mechanisms of this method are revealed by an experimentally calibrated model,which is further employed to predict its performance for thermoelectrochemical hydrogen production.Simulation results show that a net solar-to-H_(2)efficiency of26.25%could be obtained at 500℃,which is over 11 percentage points higher than that of PV-E;the first-law thermodynamic efficiency reaches up to 63.27%correspondingly.The enhanced efficiency also leads to decreased fuel consumption and lower CO_(2)emission of the proposed solar-driven SMR system.Such complementary conversion of solar PV electricity,solar thermal energy,and low-carbon fuel provides a synergistic and efficient means of sustainable H_(2)production with potentially long-term solar energy storage on a vast scale.展开更多
基金The authors are grateful to financial support of the National Basic Research Program of China(2014CB744303)the National Natural Science Foundation of China(91534125).
文摘Thermochemical conversion of fuels via pyrolysis/carbonization,cracking,gasification and combustion has to involve a number of individual reactions called attribution reactions to form an intercorrelated reaction network for any conversion process.By separating one or some attribution reactions from the others to decouple their interactions existing in the reaction network,the so-called reaction decoupling enables a better understanding of the complex thermal conversion process and further the optimization of the conditions for attribution reactions as well as the entire conversion process to realize advanced performances.The dual bed conversion and two-stage conversion are the two representative types of fuel conversion technologies developed in recent years based on reaction decoupling.Many technical advantages have been proven for such decoupling fuel conversion technologies,such as poly-generation of products,low-cost production of high-grade products,elimination of undesirable products or pollutants,easy operation and control,and so on.The treated fuels with decoupling conversion technologies mainly include solid biomass and coal,as well as liquid petroleum oil.This paper is devoted to reiteration of the reaction decoupling concept and further to reviewing the research,developments and successful applications of several decoupling fuel conversion technologies of two such types by using fluidized bed as their major reactors.
基金financially supported by the National Natural Science Foundation of China(Grant nos.21376001,21576028 and 21506012)。
文摘Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells.However,using solid carbon as the fuel of SOFCs also faces some challenges,the fluid mobility and reactive activity of carbon-based fuels are much lower than those of gaseous fuels.Therefore,the anode reaction kinetics plays a crucial role in determining the electrochemical performance of CF-SOFCs.Herein,the progress of various anodes in CF-SOFCs is reviewed from the perspective of material compositions,electrochemical performance and microstructures.Challenges faced in developing high performance anodes for CF-SOFCs are also discussed.
基金Natural Science Foundation of Xinjiang Province,Grant/Award Numbers:2019D01C064,2020D01A49,2020D01B25,2021D01B40National Natural Science Foundation of China,Grant/Award Numbers:21905209,52072273Tianshan innovation team project of Xinjiang Uygur Autonomous Region,Grant/Award Number:2021D14013。
文摘The persistent increase of CO_(2) levels in the atmosphere,already exceeding 400 ppm,urges the exploration of CO_(2) emission reduction and recycling technologies.Ideally,photocatalytic conversion of CO_(2) into valuable hydrocarbons realizes solar-to-chemical energy conversion,which is a desirable“kill two birds with one stone”strategy;namely,CO_(2) photoreduction can simultaneously tackle energy shortage and keep global carbon balance.Graphitic carbon nitride(g-C_(3)N_(4))working on CO_(2) reduction reaction deserves a highlight not only for the metal-free feature that endows it with low cost,tunable electronic structure,and easy fabrication properties but also because of its strong reduction ability.The present review concisely summarizes the latest advances of g-C_(3)N_(4)-based photocatalysts toward CO_(2) reduction.It starts with the discussion of thermodynamics and dynamics aspects of the CO_(2) reduction process.Then the modification strategies to promote g-C_(3)N_(4)-based photocatalysts in CO_(2) photoreduction have been discussed in detail,including surface functionalization,molecule structure engineering,crystallization,morphology engineering,loading cocatalyst,and constructing heterojunction.Meanwhile,the intrinsic factors affecting CO_(2) reduction activity and selectivity are analyzed and summarized.In the end,the challenges and prospects for the future development of highly g-C_(3)N_(4)-based photocatalysts in CO_(2) reduction are also presented.
基金supported by the National Natural Science Foundation of China (No.U1303291)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘High active and durable non-noble metal electrocatalysts are urgently developed to satisfy the high performance oxygen reduction reaction(ORR). We successfully synthesized Co-CoOx anchored on nitrogen-doped carbon via a facile sand-bath method(SBM), i.e., Co-CoOx/N-C(SBM). The as-obtained Co-CoOx/N-C(SBM) exhibited overwhelming superiorities to Co-CoO/N-C prepared by conventional heat treatment(CHT), particularly in electrochemical performance of ORR. Although Co-CoOx/N-C(SBM)showed smaller specific surface area of 276.8 m^2/g than that of 939.5 m^2/g from Co-CoO/N-C(CHT), the Co-CoOx/N-C(SBM) performed larger pore diameter and more Co_3O_4 active component resulting in better ORR performance in 0.1 mol/L KOH solution. The Co-CoO_x/N-C(SBM) delivered onset potential of 0.91 V vs. RHE, mid-wave potential of 0.85 V vs. RHE and limited current density of 5.46 mA/cm^2 much better than those of the Co-CoO/N-C(CHT). Furthermore, Co-CoOx/N-C(SBM) showed greater stability and better methanol tolerance superior to the commercial 20 wt% Pt/C.
基金supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(51888103)the Joint Research Center for Multi-energy Complementation and Conversion between the University of Science and Technology of China and the Institute of Engineering Thermophysics,Chinese Academy of Sciences。
文摘Hydrogen is widely regarded as a sustainable energy carrier with tremendous potential for low-carbon energy transition.Solar photovoltaic-driven water electrolysis(PV-E)is a clean and sustainable approach of hydrogen production,but with major barriers of high hydrogen production costs and limited capacity.Steam methane reforming(SMR),the state-of-the-art means of hydrogen production,has yet to overcome key obstacles of high reaction temperature and CO_(2)emission for sustainability.This work proposes a solar thermo-electrochemical SMR approach,in which solar-driven mid/low-temperature SMR is combined with electrochemical H_(2)separation and in-situ CO_(2)capture.The feasibility of this method is verified experimentally,achieving an average methane conversion of 96.8%at a dramatically reduced reforming temperature of 400-500℃.The underlying mechanisms of this method are revealed by an experimentally calibrated model,which is further employed to predict its performance for thermoelectrochemical hydrogen production.Simulation results show that a net solar-to-H_(2)efficiency of26.25%could be obtained at 500℃,which is over 11 percentage points higher than that of PV-E;the first-law thermodynamic efficiency reaches up to 63.27%correspondingly.The enhanced efficiency also leads to decreased fuel consumption and lower CO_(2)emission of the proposed solar-driven SMR system.Such complementary conversion of solar PV electricity,solar thermal energy,and low-carbon fuel provides a synergistic and efficient means of sustainable H_(2)production with potentially long-term solar energy storage on a vast scale.