This study aims to investigate the effect of mica content on the mechanical properties of clays.Commercially available ground mica was blended with a locally available clayey soil,at varying mica contents by mass of 5...This study aims to investigate the effect of mica content on the mechanical properties of clays.Commercially available ground mica was blended with a locally available clayey soil,at varying mica contents by mass of 5%,10%,15%,20%,25%and 30%,to artificially prepare various micaceous clay blends.The preliminary testing phase included consistency limits and standard Proctor compaction tests.The primary testing program consisted of unconfined compression(UC),direct shear(DS)and scanning electron microscopy(SEM)tests.The test results showed that the liquid and plastic limits exhibited a linear,monotonically increasing trend with increase in mica content.The rate of increase in the plastic limit,however,was found to be greater than that of the liquid limit,thereby leading to a gradual transition towards a non-plastic,cohesionless character.The soft,spongy fabric and high water demand of the mica mineral led to higher optimum water contents and lower maximum dry unit weights with increasing mica content.Under low confinement conditions,i.e.the UC test and the DS test at low normal stresses,the shear strength was adversely affected by mica.However,the closer packing of the clay and mica components in the matrix under high confinement conditions offsets the adverse effects of mica by inducing frictional resistance at the shearing interface,thus leading to improved strength resistance.展开更多
The friction behaviour of ZnO nanowires on natural graphite(NG)and highly oriented pyrolytic graphite(HOPG)substrates was tested in ambient conditions by use of optical microscopy based nanomanipulation.Nanowires on t...The friction behaviour of ZnO nanowires on natural graphite(NG)and highly oriented pyrolytic graphite(HOPG)substrates was tested in ambient conditions by use of optical microscopy based nanomanipulation.Nanowires on the step-free and waviness-free NG substrate exhibit a diameter-independent nominal frictional shear stress of 0.48 MPa,and this provides a benchmark for studying how the surface topography of graphite influences nanowire friction.Nanowires on the HOPG substrate present a significant diameter-dependent frictional shear stress,increasing from 0.25 to 2.78 MPa with the decrease of nanowire diameter from 485 to 142 nm.The waviness of HOPG has a limited effect on the nanowire friction,as a nanowire can fully conform to the substrate.The surface steps on the HOPG can significantly enhance the nanowire friction and lead to a much higher frictional shear stress than that on NG due to mechanical blocking and the presence of a Schwoebel barrier at step edges.The surface steps,however,can also generate small wedge-shaped gaps between a nanowire and substrate,and thus reduce the nanowire friction.With the decrease in nanowire diameter,the capacity for the nanowire to better conform to the substrate reduces the length of the wedge-shaped gaps,leading to the observed increase in nanowire friction.The results have improved our understanding of the unique friction behaviour of nanowires.Such an improved understanding is expected to benefit the design and operation of nanowire-friction-based devices,including bio-inspired fibrillar adhesives,soft grippers,rotary nanomotors,and triboelectric nanogenerators.展开更多
基金made possible through the provision of an Australian Government Research Training Program Scholarship
文摘This study aims to investigate the effect of mica content on the mechanical properties of clays.Commercially available ground mica was blended with a locally available clayey soil,at varying mica contents by mass of 5%,10%,15%,20%,25%and 30%,to artificially prepare various micaceous clay blends.The preliminary testing phase included consistency limits and standard Proctor compaction tests.The primary testing program consisted of unconfined compression(UC),direct shear(DS)and scanning electron microscopy(SEM)tests.The test results showed that the liquid and plastic limits exhibited a linear,monotonically increasing trend with increase in mica content.The rate of increase in the plastic limit,however,was found to be greater than that of the liquid limit,thereby leading to a gradual transition towards a non-plastic,cohesionless character.The soft,spongy fabric and high water demand of the mica mineral led to higher optimum water contents and lower maximum dry unit weights with increasing mica content.Under low confinement conditions,i.e.the UC test and the DS test at low normal stresses,the shear strength was adversely affected by mica.However,the closer packing of the clay and mica components in the matrix under high confinement conditions offsets the adverse effects of mica by inducing frictional resistance at the shearing interface,thus leading to improved strength resistance.
基金This project is financially supported by the National Natural Science Foundation of China(Nos.12072111 and 11674399)Hunan Provincial Natural Science Foundation of China(No.2020JJ4676)+1 种基金Changsha Municipal Natural Science Foundation(No.kq2007002)Australian Research Council(No.DP160103190).
文摘The friction behaviour of ZnO nanowires on natural graphite(NG)and highly oriented pyrolytic graphite(HOPG)substrates was tested in ambient conditions by use of optical microscopy based nanomanipulation.Nanowires on the step-free and waviness-free NG substrate exhibit a diameter-independent nominal frictional shear stress of 0.48 MPa,and this provides a benchmark for studying how the surface topography of graphite influences nanowire friction.Nanowires on the HOPG substrate present a significant diameter-dependent frictional shear stress,increasing from 0.25 to 2.78 MPa with the decrease of nanowire diameter from 485 to 142 nm.The waviness of HOPG has a limited effect on the nanowire friction,as a nanowire can fully conform to the substrate.The surface steps on the HOPG can significantly enhance the nanowire friction and lead to a much higher frictional shear stress than that on NG due to mechanical blocking and the presence of a Schwoebel barrier at step edges.The surface steps,however,can also generate small wedge-shaped gaps between a nanowire and substrate,and thus reduce the nanowire friction.With the decrease in nanowire diameter,the capacity for the nanowire to better conform to the substrate reduces the length of the wedge-shaped gaps,leading to the observed increase in nanowire friction.The results have improved our understanding of the unique friction behaviour of nanowires.Such an improved understanding is expected to benefit the design and operation of nanowire-friction-based devices,including bio-inspired fibrillar adhesives,soft grippers,rotary nanomotors,and triboelectric nanogenerators.