An initial investigation on the roughness and frictional properties of the self-assembled thin films from polyelectrolytes is presented. Star-shaped C-60-Poly(styrene-maleic anhydride) was successful prepared. The mul...An initial investigation on the roughness and frictional properties of the self-assembled thin films from polyelectrolytes is presented. Star-shaped C-60-Poly(styrene-maleic anhydride) was successful prepared. The multilayer thin films have been fabricated on mica with diazoresin as the cationic polyelectrolyte and hydrolyzed star-shaped C-60-poly(styrene-maleic anhydride) as the anionic polyelectrolyte via self-assembly technique. The crosslinking structure of the films is formed from the conversion of ionic bond to covalent bond after UV irradiation. AFM/FFM investigations provide insights into the roughness and frictional properties on a microscale. The roughness depends strongly on the number of film layers in the case of C-60-containing films. The frictional forces of the films exhibited a well behaved non-linear relationship in response to the change of applied load. It supports the prediction of enhanced load-bearing property Of C60-containing thin films.展开更多
基金This project is financially supported by the National Natural Science Foundation of China (No. 59843008).
文摘An initial investigation on the roughness and frictional properties of the self-assembled thin films from polyelectrolytes is presented. Star-shaped C-60-Poly(styrene-maleic anhydride) was successful prepared. The multilayer thin films have been fabricated on mica with diazoresin as the cationic polyelectrolyte and hydrolyzed star-shaped C-60-poly(styrene-maleic anhydride) as the anionic polyelectrolyte via self-assembly technique. The crosslinking structure of the films is formed from the conversion of ionic bond to covalent bond after UV irradiation. AFM/FFM investigations provide insights into the roughness and frictional properties on a microscale. The roughness depends strongly on the number of film layers in the case of C-60-containing films. The frictional forces of the films exhibited a well behaved non-linear relationship in response to the change of applied load. It supports the prediction of enhanced load-bearing property Of C60-containing thin films.