期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
贝叶斯因子及其在JASP中的实现 被引量:45
1
作者 胡传鹏 孔祥祯 +2 位作者 Eric-Jan Wagenmakers Alexander Ly 彭凯平 《心理科学进展》 CSSCI CSCD 北大核心 2018年第6期951-965,共15页
统计推断在科学研究中起到关键作用,然而当前科研中最常用的经典统计方法——零假设检验(Null hypothesis significance test,NHST)却因难以理解而被部分研究者误用或滥用。有研究者提出使用贝叶斯因子(Bayes factor)作为一种替代和(或... 统计推断在科学研究中起到关键作用,然而当前科研中最常用的经典统计方法——零假设检验(Null hypothesis significance test,NHST)却因难以理解而被部分研究者误用或滥用。有研究者提出使用贝叶斯因子(Bayes factor)作为一种替代和(或)补充的统计方法。贝叶斯因子是贝叶斯统计中用来进行模型比较和假设检验的重要方法,其可以解读为对零假设H_0或者备择假设H_1的支持程度。其与NHST相比有如下优势:同时考虑H_0和H_1并可以用来支持H_0、不"严重"地倾向于反对H_0、可以监控证据强度的变化以及不受抽样计划的影响。目前,贝叶斯因子能够很便捷地通过开放的统计软件JASP实现,本文以贝叶斯t检验进行示范。贝叶斯因子的使用对心理学研究者来说具有重要的意义,但使用时需要注意先验分布选择的合理性以及保持数据分析过程的透明与公开。 展开更多
关键词 贝叶斯因子 贝叶斯学派 频率学派 假设检验 JASP
下载PDF
Fiducial inference in the pivotal family of distributions 被引量:17
2
作者 XU Xingzhong & LI Guoying Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China 《Science China Mathematics》 SCIE 2006年第3期410-432,共23页
In this paper a family, called the pivotal family, of distributions is considered.A pivotal family is determined by a generalized pivotal model. Analytical results show that a great many parametric families of distrib... In this paper a family, called the pivotal family, of distributions is considered.A pivotal family is determined by a generalized pivotal model. Analytical results show that a great many parametric families of distributions are pivotal. In a pivotal family of distributions a general method of deriving fiducial distributions of parameters is proposed. In the method a fiducial model plays an important role. A fiducial model is a function of a random variable with a known distribution, called the pivotal random element, when the observation of a statistic is given.The method of this paper includes some other methods of deriving fiducial distributions. Specially the first fiducial distribution given by Fisher can be derived by the method. For the monotone likelihood ratio family of distributions, which is a pivotal family, the fiducial distributions have a frequentist property in the Neyman-Pearson view. Fiducial distributions of regular parametric functions also have the above frequentist property. Some advantages of the fiducial inference are exhibited in four applications of the fiducial distribution. Many examples are given, in which the fiducial distributions cannot be derived by the existing methods. 展开更多
关键词 CONFIDENCE bounds fiducial distributions fiducial model frequentist prop-erty GENERALIZED pivotal model pivotal FAMILY of distributions testing hypotheses.
原文传递
应用R语言netmeta程序包实现网状Meta分析 被引量:15
3
作者 张超 耿培亮 +1 位作者 郭毅 曾宪涛 《中国循证医学杂志》 CSCD 2014年第5期625-630,共6页
netmeta程序包是基于经典频率学派研发、在R语言框架下运行的专用于网状Meta分析的程序包。该程序包克服了基于贝叶斯统计学派研发的软件及程序包实现网状Meta分析时对先验设定的难点,同时具备操作流程简单、操作难度小等优点。此外,该... netmeta程序包是基于经典频率学派研发、在R语言框架下运行的专用于网状Meta分析的程序包。该程序包克服了基于贝叶斯统计学派研发的软件及程序包实现网状Meta分析时对先验设定的难点,同时具备操作流程简单、操作难度小等优点。此外,该程序包还能同时以随机效应与固定效应模型展现单个配对研究及Meta分析合并的结果,并能绘制森林图。本文通过实例展示了应用netmeta程序包实现网状Meta分析的过程。 展开更多
关键词 网状Meta分析 贝叶斯学派 频率学派 netmeta程序包 R软件
原文传递
FREQUENTIST MODEL AVERAGING ESTIMATION:A REVIEW 被引量:15
4
作者 Haiying WANG Xinyu ZHANG Guohua ZOU Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China. 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第4期732-748,共17页
In applications, the traditional estimation procedure generally begins with model selection.Once a specific model is selected, subsequent estimation is conducted under the selected model withoutconsideration of the un... In applications, the traditional estimation procedure generally begins with model selection.Once a specific model is selected, subsequent estimation is conducted under the selected model withoutconsideration of the uncertainty from the selection process. This often leads to the underreportingof variability and too optimistic confidence sets. Model averaging estimation is an alternative to thisprocedure, which incorporates model uncertainty into the estimation process. In recent years, therehas been a rising interest in model averaging from the frequentist perspective, and some importantprogresses have been made. In this paper, the theory and methods on frequentist model averagingestimation are surveyed. Some future research topics are also discussed. 展开更多
关键词 Adaptive regression asymptotic theory frequentist model averaging model selection optimality.
原文传递
Frequentist and Bayesian Sample Size Determination for Single-Arm Clinical Trials Based on a Binary Response Variable: A Shiny App to Implement Exact Methods
5
作者 Susanna Gentile Valeria Sambucini 《Open Journal of Statistics》 2024年第1期90-105,共16页
Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct ... Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach. 展开更多
关键词 Binomial Proportion frequentist and Bayesian Power Functions Exact Sample Size Determination Shiny App Two-Priors Approach
下载PDF
Uncertainty quantification in the Permian Basin using conventional and modified bootstrap methodology
6
作者 Chukwuemeka O.Okoli Scott D.Goddard Obadare O.Awoleke 《Petroleum Research》 EI 2023年第4期439-454,共16页
Various uncertainty quantification methodologies are presented using a combination of several deter-ministic decline curve analysis models and two bootstrapping algorithms.These probabilistic models are applied to 126... Various uncertainty quantification methodologies are presented using a combination of several deter-ministic decline curve analysis models and two bootstrapping algorithms.These probabilistic models are applied to 126 sample wells from the Permian basin.Results are presented for 12-72 months of pro-duction hindcast given an average well production history of 103 months.Based on the coverage rate and the forecast error(with the coverage rate being more significant in our choice of the best probabilistic models)and using up to one-half of the available production history for a group of sample wells from the Permian Basin,we find that the CBM-SEPD combination is the best probabilistic model for the Central Basin Platform,the MBM-Arps combination is the best probabilistic model for the Delaware Basin,the CBM-Arps is the best probabilistic model for the Midland Basin,and the best probabilistic model for the overall Permian Basin is the CBM-Arps when early time data is used as hindcast and CBM-SEPD for when one-quarter to one-half of the data is used as hindcast.When three-quarters or more of the available production history is used for analysis,the MBM-SEPD probabilistic model is the best combination in terms of both coverage rate and forecast error for all the sub-basins in the Permian.The novelty of this work lies in its extension of bootstrapping methods to other decline curve analysis models.This work also offers the engineer guidance on the best choice of probabilistic model whilst attempting to forecast production from the Permian Basin. 展开更多
关键词 Uncertainty quantification Machine learning BOOTSTRAPPING Reservoir forecasting frequentist probabilistic models
原文传递
Frequentist Model Averaging and Applications to Bernoulli Trials
7
作者 Georges Nguefack-Tsague Walter Zucchini Siméon Fotso 《Open Journal of Statistics》 2016年第3期545-553,共9页
In several instances of statistical practice, it is not uncommon to use the same data for both model selection and inference, without taking account of the variability induced by model selection step. This is usually ... In several instances of statistical practice, it is not uncommon to use the same data for both model selection and inference, without taking account of the variability induced by model selection step. This is usually referred to as post-model selection inference. The shortcomings of such practice are widely recognized, finding a general solution is extremely challenging. We propose a model averaging alternative consisting on taking into account model selection probability and the like-lihood in assigning the weights. The approach is applied to Bernoulli trials and outperforms Akaike weights model averaging and post-model selection estimators. 展开更多
关键词 Model Selection Post-Model Selection Estimator frequentist Model Averaging Bernoulli Trials
下载PDF
An Exact Generalized Test for Homogeneity of Inverse Gaussian Scale Parameters
8
作者 Xu-hua LIU Xing-zhong XU Wei-yan MU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2019年第4期761-769,共9页
In this paper, we propose a new generalized p-value for testing homogeneity of scale parameters λi from k independent inverse Gaussian populations. The proposed generalized p-value is proved to have exact frequentist... In this paper, we propose a new generalized p-value for testing homogeneity of scale parameters λi from k independent inverse Gaussian populations. The proposed generalized p-value is proved to have exact frequentist property, and it is also invariant under the group of scale transformation. Simulation results indicate that the proposed test is better than existing approximate χ^2 test. 展开更多
关键词 INVERSE GAUSSIAN distribution Generalized P-VALUE EXACT frequentist PROPERTY
原文传递
Effects of Bayesian Model Selection on Frequentist Performances: An Alternative Approach
9
作者 Georges Nguefack-Tsague Walter Zucchini 《Applied Mathematics》 2016年第10期1103-1115,共14页
It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selectio... It is quite common in statistical modeling to select a model and make inference as if the model had been known in advance;i.e. ignoring model selection uncertainty. The resulted estimator is called post-model selection estimator (PMSE) whose properties are hard to derive. Conditioning on data at hand (as it is usually the case), Bayesian model selection is free of this phenomenon. This paper is concerned with the properties of Bayesian estimator obtained after model selection when the frequentist (long run) performances of the resulted Bayesian estimator are of interest. The proposed method, using Bayesian decision theory, is based on the well known Bayesian model averaging (BMA)’s machinery;and outperforms PMSE and BMA. It is shown that if the unconditional model selection probability is equal to model prior, then the proposed approach reduces BMA. The method is illustrated using Bernoulli trials. 展开更多
关键词 Model Selection Uncertainty Model Uncertainty Bayesian Model Selection Bayesian Model Averaging Bayesian Theory frequentist Performance
下载PDF
A Mixture-Based Bayesian Model Averaging Method
10
作者 Georges Nguefack-Tsague Walter Zucchini 《Open Journal of Statistics》 2016年第2期220-228,共9页
Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator ar... Bayesian model averaging (BMA) is a popular and powerful statistical method of taking account of uncertainty about model form or assumption. Usually the long run (frequentist) performances of the resulted estimator are hard to derive. This paper proposes a mixture of priors and sampling distributions as a basic of a Bayes estimator. The frequentist properties of the new Bayes estimator are automatically derived from Bayesian decision theory. It is shown that if all competing models have the same parametric form, the new Bayes estimator reduces to BMA estimator. The method is applied to the daily exchange rate Euro to US Dollar. 展开更多
关键词 MIXTURE Bayesian Model Selection Bayesian Model Averaging Bayesian Theory frequentist Performance
下载PDF
Differences in parameter estimates derived from various methods for the ORYZA(v3) Model
11
作者 TAN Jun-wei DUAN Qing-yun +1 位作者 GONG Wei DI Zhen-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第2期375-388,共14页
Parameter estimation is always a difficult issue for crop model users, and inaccurate parameter values will result in deceptive model predictions. Parameter values may vary with different inversion methods due to equi... Parameter estimation is always a difficult issue for crop model users, and inaccurate parameter values will result in deceptive model predictions. Parameter values may vary with different inversion methods due to equifinality and differences in the estimating processes. Therefore, it is of great importance to evaluate the factors which may influence parameter estimates and to make a comparison of the current widely-used methods. In this study, three popular frequentist methods(SCE-UA, GA and PEST) and two Bayesian-based methods(GLUE and MCMC-AM) were applied to estimate nine cultivar parameters using the ORYZA(v3) Model. The results showed that there were substantial differences between the parameter estimates derived by the different methods, and they had strong effects on model predictions. The parameter estimates given by the frequentist methods were obviously sensitive to initial values, and the extent of the sensitivity varied with algorithms and objective functions. Among the frequentist methods, the SCE-UA was recommended due to the balance between stable convergence and high efficiency. All the parameter estimates remarkably improved the goodness of model-fit, and the parameter estimates derived from the Bayesian-based methods had relatively worse performance compared to the frequentist methods. In particular, the parameter estimates with the highest probability density of posterior distributions derived from the MCMC-AM method(MCMC_P_(max)) led to results equivalent to those derived from the frequentist methods, and even better in some situations. Additionally, model accuracy was greatly influenced by the values of phenology parameters in validation. 展开更多
关键词 parameter estimation frequentist method Bayesian method crop model CALIBRATION
下载PDF
Quantile Regression under Local Misspecification 被引量:1
12
作者 Xiao-gang DUAN Qi-hua WANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2020年第4期790-802,共13页
The frequentist model averaging(FMA)and the focus information criterion(FIC)under a local framework have been extensively studied in the likelihood and regression setting since the seminal work of Hjort and Claes kens... The frequentist model averaging(FMA)and the focus information criterion(FIC)under a local framework have been extensively studied in the likelihood and regression setting since the seminal work of Hjort and Claes kens in 2003.One inconvenience,however,of the existing works is that they usually require the involved criterion function to be twice differentiable which thus prevents a direct application to the case of quantile regression(QR).This as well as some other intrinsic merits of QR motivate us to study the FIC and FMA in a locally misspecified linear QR model.Specifically,we derive in this paper the explicit asymptotic risk expression for a general submodel-based QR estimator of a focus parameter.Then based on this asymptotic result,we develop the FIC and FMA in the current setting.Our theoretical development depends crucially on the convexity of the objective function,which makes possible to establish the asymptotics based on the existing convex stochastic process theory.Simulation studies are presented to illustrate the finite sample performance of the proposed method.The low birth weight data set is analyzed. 展开更多
关键词 frequentist model averaging focus information criterion local framework quantile regression
原文传递
Least Squares Model Averaging Based on Generalized Cross Validation 被引量:1
13
作者 Xin-min LI Guo-hua ZOU +1 位作者 Xin-yu ZHANG Shang-wei ZHAO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第3期495-509,共15页
Frequentist model averaging has received much attention from econometricians and statisticians in recent years.A key problem with frequentist model average estimators is the choice of weights.This paper develops a new... Frequentist model averaging has received much attention from econometricians and statisticians in recent years.A key problem with frequentist model average estimators is the choice of weights.This paper develops a new approach of choosing weights based on an approximation of generalized cross validation.The resultant least squares model average estimators are proved to be asymptotically optimal in the sense of achieving the lowest possible squared errors.Especially,the optimality is built under both discrete and continuous weigh sets.Compared with the existing approach based on Mallows criterion,the conditions required for the asymptotic optimality of the proposed method are more reasonable.Simulation studies and real data application show good performance of the proposed estimators. 展开更多
关键词 asymptotic optimality frequentist model averaging generalized cross validation mallows criterion
原文传递
潜变量建模的贝叶斯方法 被引量:18
14
作者 王孟成 邓俏文 毕向阳 《心理科学进展》 CSSCI CSCD 北大核心 2017年第10期1682-1695,共14页
贝叶斯统计是统计学的两大流派之一,近年来贝叶斯统计在社会及行为科学领域日益流行。鉴于国内心理学界对贝叶斯统计应用仍不广泛,本文尝试从非技术性的角度对贝叶斯统计用于潜变量建模的过程进行简要介绍。主要涉及贝叶斯与频率论在统... 贝叶斯统计是统计学的两大流派之一,近年来贝叶斯统计在社会及行为科学领域日益流行。鉴于国内心理学界对贝叶斯统计应用仍不广泛,本文尝试从非技术性的角度对贝叶斯统计用于潜变量建模的过程进行简要介绍。主要涉及贝叶斯与频率论在统计学基本概念上的对比;贝叶斯统计的基本原理和分析过程。最后以一个验证性因子分析为例,简要介绍贝叶斯统计用于潜变量建模的分析过程。希望本文能为国内心理学者进行潜变量建模提供新的视角。 展开更多
关键词 贝叶斯 频率论 潜变量建模 Mplus
下载PDF
套期保值,估计风险与贝叶斯统计——基于中国铜期货市场的经验研究 被引量:7
15
作者 付剑茹 张宗成 《中国管理科学》 CSSCI 北大核心 2009年第4期21-29,共9页
针对期货最优套期保值策略估计中可能存在的估计风险问题,本文对单变量线性回归模型(OLS模型)和多变量线性回归模型(VAR模型和EC-VAR模型)进行贝叶斯分析,并采用Gibbs抽样方法对中国铜期货市场的最优套期保值策略进行了实证分析。本文... 针对期货最优套期保值策略估计中可能存在的估计风险问题,本文对单变量线性回归模型(OLS模型)和多变量线性回归模型(VAR模型和EC-VAR模型)进行贝叶斯分析,并采用Gibbs抽样方法对中国铜期货市场的最优套期保值策略进行了实证分析。本文还同时估计了基于频率统计方法的最优套期保值策略,并对贝叶斯统计下和频率统计下的最优套期保值策略进行了分析比较。实证结果清楚表明,估计风险对模型结果有重要影响。在处理估计风险方面,贝叶斯统计较频率统计方法有明显优势。 展开更多
关键词 套期保值 估计风险 贝叶斯统计 GIBBS抽样 频率统计
原文传递
网络Meta分析研究进展系列(二):网络Meta分析统计模型及模型拟合软件选择 被引量:6
16
作者 张天嵩 孙凤 +3 位作者 董圣杰 杨智荣 武珊珊 田金徽 《中国循证心血管医学杂志》 2020年第7期769-774,793,共7页
本文系统梳理了目前网络Meta分析(NMA)的常用统计模型、建模策略、分析策略和统计软件,并给出合理选择NMA模型和软件的建议,以期提高NMA制定者和使用者规范实施和解读NMA的能力。
关键词 网络Meta分析 统计模型 贝叶斯策略 频率学策略 统计软件
下载PDF
广义线性模型下模型平均的比较研究 被引量:5
17
作者 乔鸽 周建红 李新民 《系统科学与数学》 CSCD 北大核心 2021年第4期1164-1180,共17页
模型平均以其稳健性好,预测精度高等诸多优点获得了当代统计学和计量经济学界的高度关注,在经济、金融、生物、医学等领域有着广泛的应用前景.模型平均的发展方向主要包括贝叶斯模型平均(BMA)和频率模型平均(FMA).文章介绍了贝叶斯模型... 模型平均以其稳健性好,预测精度高等诸多优点获得了当代统计学和计量经济学界的高度关注,在经济、金融、生物、医学等领域有着广泛的应用前景.模型平均的发展方向主要包括贝叶斯模型平均(BMA)和频率模型平均(FMA).文章介绍了贝叶斯模型平均方法,改进贝叶斯模型平均权重的D-概率方法,以及频率模型平均方法,并对BMA和FMA进行了理论上的比较,然后通过仿真研究比较了上述模型平均方法在线性和广义线性模型下的有限样本性能. 展开更多
关键词 频率模型平均 贝叶斯模型平均 权重 D-概率 广义线性模型
原文传递
故障终止时,HPP故障数的双样和多样预测 被引量:5
18
作者 周源泉 李宝盛 《强度与环境》 2008年第5期49-54,共6页
研究了故障终止时,齐次Poisson过程未来故障数的预测问题,根据已出现的故障数和终止时间,给出了未来故障数的经典(Frequentist)点估计、经典精确预测区间、正态近似预测区间、Bayesian精确预测区间、极大后验点估计、Fiducial预测区间。
关键词 预测 POISSON过程 故障数 经典精确预测区间 Bayesian精确预测区间
下载PDF
基于频率统计和贝叶斯统计的零事件率区间估计方法比较研究
19
作者 刘晋 Tianxin Shi +1 位作者 赵杨 邵方 《中国卫生统计》 CSCD 北大核心 2023年第1期15-19,26,共6页
目的零事件率是当抽样事件数为零时二项率的一种特殊情形,对其区间估计缺乏深入研究。方法利用二项分布和贝塔分布的关系,使用SAS 9.8设计三层嵌套9.4亿个参数空间点的计算密集型模拟实验,从区间精度、准确度和基于精确法的相对误差三... 目的零事件率是当抽样事件数为零时二项率的一种特殊情形,对其区间估计缺乏深入研究。方法利用二项分布和贝塔分布的关系,使用SAS 9.8设计三层嵌套9.4亿个参数空间点的计算密集型模拟实验,从区间精度、准确度和基于精确法的相对误差三个方面比较了三种频率方法和两种贝叶斯方法区间估计的统计性能,并通过医学实例说明其应用。结果首次报告了在保证覆盖率满足名义水平的条件下,精确法优于Wilson近似法的临界样本量。在平衡估计精度(区间宽度)和估计准确度(覆盖率)的思想指导下,通过大规模统计模拟和实例分析,推荐使用精确法进行零事件率的区间估计。结论随着医学技术的进步,零事件率越来越多地出现在医学研究中,在对这一特殊率进行统计推断时,推荐使用精确法。 展开更多
关键词 零事件率 频率统计 贝叶斯统计 区间估计
下载PDF
近垒能区^(7)Be+^(120)Sn的准弹性散射研究
20
作者 常昶 杨磊 +15 位作者 林承键 杨彦云 温培威 骆天鹏 马军兵 许世伟 王康 段芳芳 马南茹 贾会明 杨峰 黄大湖 张明昊 杨过 杨赟 莫腾欢 《原子核物理评论》 CAS CSCD 北大核心 2023年第3期356-361,共6页
近垒能区弱束缚核的反应动力学是目前核物理研究热点之一。本工作使用大立体角硅探测器阵列测量了^(7)Be+^(120)Sn体系在48.05 MeV的准弹性散射,结合蒙特卡罗模拟得到其微分截面。基于光学模型,分别用频率方法和贝叶斯方法对角分布进行... 近垒能区弱束缚核的反应动力学是目前核物理研究热点之一。本工作使用大立体角硅探测器阵列测量了^(7)Be+^(120)Sn体系在48.05 MeV的准弹性散射,结合蒙特卡罗模拟得到其微分截面。基于光学模型,分别用频率方法和贝叶斯方法对角分布进行拟合。在前角区,两种方法给出了一致的结果;在后角区,频率方法的结果呈现明显的振荡结构,而贝叶斯方法的结果较为平滑,在靠近180°有振荡上升的趋势。 展开更多
关键词 近垒能区 弱束缚核 准弹性散射角分布 光学模型 频率方法 贝叶斯方法
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部