With the rapid development and wide use of Global Positioning System in technology tools, such as smart phones and touch pads, many people share their personal experience through their trajectories while visiting plac...With the rapid development and wide use of Global Positioning System in technology tools, such as smart phones and touch pads, many people share their personal experience through their trajectories while visiting places of interest. Therefore, trajectory query processing has emerged in recent years to help users find their best trajectories. However, with the huge amount of trajectory points and text descriptions, such as the activities practiced by users at these points, organizing these data in the index becomes tedious. Therefore, the parallel method becomes indispensable. In this paper, we have investigated the problem of distributed trajectory query processing based on the distance and frequent activities. The query is specified by start and final points in the trajectory, the distance threshold, and a set of frequent activities involved in the point of interest of the trajectory.As a result, the query returns the shortest trajectory including the most frequent activities with high support and high confidence. To simplify the query processing, we have implemented the Distributed Mining Trajectory R-Tree index(DMTR-Tree). For this method, we initially managed the large trajectory dataset in distributed R-Tree indexes.Then, for each index, we applied the frequent itemset Apriori algorithm for each point to select the frequent activity set. For the faster computation of the above algorithms, we utilized the cluster computing framework of Apache Spark with MapReduce as the programing model. The experimental results show that the DMTR-Tree index and the query-processing algorithm are efficient and can achieve the scalability.展开更多
It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequ...It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. In this paper, two incremental updating algorithms, FUX-QMiner and FUXQMiner, are proposed for efficient maintenance of discovered frequent query patterns and generation the new frequent query patterns when new XMI, queries are added into the database. Experimental results from our implementation show that the proposed algorithms have good performance. Key words XML - frequent query pattern - incremental algorithm - data mining CLC number TP 311 Foudation item: Supported by the Youthful Foundation for Scientific Research of University of Shanghai for Science and TechnologyBiography: PENG Dun-lu (1974-), male, Associate professor, Ph.D, research direction: data mining, Web service and its application, peerto-peer computing.展开更多
基金partially supported by the National Natural Science Foundation of China (Nos. U1509216 and 61472099)the National Sci-Tech Support Plan (No. 2015BAH10F01)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Provience (No. LC2016026)MOECMicrosoft Key Laboratory of Natural Language Processing and Speech, Harbin Institute of Technology
文摘With the rapid development and wide use of Global Positioning System in technology tools, such as smart phones and touch pads, many people share their personal experience through their trajectories while visiting places of interest. Therefore, trajectory query processing has emerged in recent years to help users find their best trajectories. However, with the huge amount of trajectory points and text descriptions, such as the activities practiced by users at these points, organizing these data in the index becomes tedious. Therefore, the parallel method becomes indispensable. In this paper, we have investigated the problem of distributed trajectory query processing based on the distance and frequent activities. The query is specified by start and final points in the trajectory, the distance threshold, and a set of frequent activities involved in the point of interest of the trajectory.As a result, the query returns the shortest trajectory including the most frequent activities with high support and high confidence. To simplify the query processing, we have implemented the Distributed Mining Trajectory R-Tree index(DMTR-Tree). For this method, we initially managed the large trajectory dataset in distributed R-Tree indexes.Then, for each index, we applied the frequent itemset Apriori algorithm for each point to select the frequent activity set. For the faster computation of the above algorithms, we utilized the cluster computing framework of Apache Spark with MapReduce as the programing model. The experimental results show that the DMTR-Tree index and the query-processing algorithm are efficient and can achieve the scalability.
文摘It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. In this paper, two incremental updating algorithms, FUX-QMiner and FUXQMiner, are proposed for efficient maintenance of discovered frequent query patterns and generation the new frequent query patterns when new XMI, queries are added into the database. Experimental results from our implementation show that the proposed algorithms have good performance. Key words XML - frequent query pattern - incremental algorithm - data mining CLC number TP 311 Foudation item: Supported by the Youthful Foundation for Scientific Research of University of Shanghai for Science and TechnologyBiography: PENG Dun-lu (1974-), male, Associate professor, Ph.D, research direction: data mining, Web service and its application, peerto-peer computing.