期刊文献+

基于频繁项集和相关性的局部反馈查询扩展 被引量:1

Query Expansion of Local Feedback Based on Frequent Itemset and Correlation
下载PDF
导出
摘要 针对信息检索中存在的词不匹配问题,提出一种基于频繁项集和相关性的局部反馈查询扩展算法。设计查询扩展模型和扩展词权重计算方法,从前列n篇初检文档中,挖掘同时含有查询词项、非查询词项的频繁项集,在该频繁项集中提取非查询词项作为候选扩展词,计算每个候选扩展词与整个查询的相关性,并根据该相关性得到最终的扩展词,以此实现查询扩展。实验结果表明,该算法能有效提高信息检索的性能。 Aiming at the term mismatch issues of existing information retrieval system,a novel query expansion algorithm of local feedback is proposed based on frequent itemsets and correlation.Those frequent itemsets containing original query terms and non-query terms synchronously are mined in the top-ranked n chapter retrieved local documents and non-query terms from the frequent itemsets are extracted to make into candidate expansion terms,and then the correlation of each candidate expansion terms and the entire original query is calculated.Final expansion terms are obtained according to its correlation for query expansion.At the same time,a new query expansion model and computing method for weights of expansion terms are presented.Experimental results show that the algorithm proposed is effective,can enhance and improve the performance of information retrieval.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第23期66-68,共3页 Computer Engineering
基金 广西教育厅科研基金资助项目(201010LX679 201106LX388) 广西教育学院2010年度院级重点课题基金资助项目(桂教院科研[2010]7号) 广西高校优秀人才资助计划基金资助项目(桂教人[2011]40号)
关键词 频繁项集 查询扩展 信息检索 局部反馈 frequent itemset query expansion information retrieval local feedback
  • 相关文献

参考文献6

二级参考文献51

  • 1钱晓东,王正欧.基于神经网络文本检索词的语义扩充[J].计算机工程,2004,30(20):22-24. 被引量:3
  • 2Vechtomova O, Karamuftuoglu M. Elicitation and Use of Relevance Feedback Information[J]. Information Processing and Management, 2006, 42(1): 191-206. 被引量:1
  • 3Lin H C, Wang L H. A New Query Expansion Method for Document Retrieval by Mining Additional Query Terms[C]//Proceedings of the 2005 International Conference on Business and Information. Hong Kong, China: [s. n.], 2005: 73-84. 被引量:1
  • 4Lee K S, Park Y C. Re-ranking Model Using Clusters[J]. Information Processing Management, 2001, 7(3): 1-14. 被引量:1
  • 5Khan M S, Khor S. Enhanced Web Document Retrieval Using Automatic Query Expansion[J]. American Society for Information Science and Technology, 2004, 55(6): 29-40. 被引量:1
  • 6Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[C]//Proceedings of the ACM SIGMOD Conference on Management of Data. Washington D. C., USA: [s. n.], 1993: 207-216. 被引量:1
  • 7Qiu Yonggang, Frei H P. Concept Based Query Expansion[C]//Proc. of the 16th ACM SIGIR Conference on Research and Development in Information Retrieval. Pittsburgh, PA, USA: [s. n.], 1993. 被引量:1
  • 8Xu Jinxi, Bruce C W. Query Expansion Using Local and Global Document Analysis[C]//Proc. of the 19th Annual International ACM SIGIR Conf. on Research and Development in Information Retrieval. Zurich, Switzerland: [s. n.], 1996. 被引量:1
  • 9Cui Hang, Wen Jirong, Nie Jianyun, et al. Query Expansion by Mining User Logs[J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(4): 829-839. 被引量:1
  • 10Zhang Chengqi, Qin Zhenxing, Yan Xiaowei. Association-based Segmentation for Chinese-crossed Query Expansion[J]. IEEE Intelligent Informatics Bulletin, 2005, 5(1): 18-25. 被引量:1

共引文献56

同被引文献14

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部