A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex v is called the weighted degree of v, denoted by dw(v...A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex v is called the weighted degree of v, denoted by dw(v). The weight of a cycle is defined as the sum of the weights of its edges. Fujisawa proved that if G is a 2-connected triangle-free weighted graph such that the minimum weighted degree of G is at least d, then G contains a cycle of weight at least 2d. In this paper, we proved that if G is a 2-connected triangle-free weighted graph of even size such that dw(u) + dw(v) ≥ 2d holds for any pair of nonadjacent vertices u, v ∈ V(G), then G contains a cycle of weight at least 2d.展开更多
For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been wid...For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11001269)
文摘A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex v is called the weighted degree of v, denoted by dw(v). The weight of a cycle is defined as the sum of the weights of its edges. Fujisawa proved that if G is a 2-connected triangle-free weighted graph such that the minimum weighted degree of G is at least d, then G contains a cycle of weight at least 2d. In this paper, we proved that if G is a 2-connected triangle-free weighted graph of even size such that dw(u) + dw(v) ≥ 2d holds for any pair of nonadjacent vertices u, v ∈ V(G), then G contains a cycle of weight at least 2d.
文摘For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.