The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonc...The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.展开更多
A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which a...A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which are superconvergent.展开更多
This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each inter...This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each internal grid point, the solution u(x,y,z) and its Laplacian Δ4u are obtained. The resulting stencil algo-rithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method is tested on three problems and compares very favourably with the corresponding second order approximation which we also discuss using coupled approach.展开更多
基金supported by National Natural Science Foundation of China (Grant No.11101415)the National Center for Mathematics and Interdisciplinary Sciences,CAS
文摘The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.
基金Supported by The National Natural Science Foundations of China (19871027)
文摘A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which are superconvergent.
文摘This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each internal grid point, the solution u(x,y,z) and its Laplacian Δ4u are obtained. The resulting stencil algo-rithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method is tested on three problems and compares very favourably with the corresponding second order approximation which we also discuss using coupled approach.