期刊文献+

基于高精度数值解法的畦灌一维土壤水动力学模型 被引量:1

One-Dimensional Soil Water Dynamic Model Based on Numerical Solution Method with High-Order Accuracy
下载PDF
导出
摘要 采用高精度的有限差分法和有限体积法对一维Richards方程进行时空离散,构建基于四阶时空离散精度数值解法的畦灌一维土壤水动力学模型,并进行验证。结果表明,基于四阶时空离散精度数值解法的畦灌一维土壤水动力学模型具有更佳的模拟精度和良好的质量守恒性,收敛速率比对比数值解法提高了1倍,计算效率提高了0.6倍。 One-dimensional soil water dynamic model under the border irrigation based on the method of fourth-order temporal-spatial discretization accuracy was constructed on the basis of temporal-spatial discretization of one-dimensional Riehards equation using the finite volume method and finite difference method, and the model was verified according to the soil column experiments. The results indicated that the established numerical solution method presented better simulated precision and satisfactory mass balance performance, whose convergence rate increased by about 100% and computational efficiency was improved a bout 0.6 times compared to commonly numerical solution method.
出处 《灌溉排水学报》 CSCD 北大核心 2013年第5期1-6,共6页 Journal of Irrigation and Drainage
基金 国家863计划重点项目课题(2011AA100505) 国家科技计划课题(2012BAD08B01)
关键词 土壤水 四阶精度 有限体积法 时空离散 收敛速率 soil water fourth-order accuracy temporal-spatial discretization convergence rate computational efficiency
  • 相关文献

参考文献8

  • 1Romano N, Brunone B, Santini A. Numerical analysis of one-dimensional unsaturated flow in layered soils[J]. Advances in Water Re- sources, 1998, 21(4) :315 - 324. 被引量:1
  • 2Morita M, Yen B C. Modeling of conjunctive two-dimensional surface three-dimensional subsurface flows[J]. Journal of Hydraulic Engi neering, 2002, 128(2):184- 200. 被引量:1
  • 3Manzini G, Ferraris S. Mass-conservative finite volume methods on 2-D unstructured grids for the Richards' equation[J]. Advances in Water Resources, 2004, 27(12):1 199 - 1 215. 被引量:1
  • 4Zhang Q, Johansen H, Colelia P. A fourth-order accurate finite volume method with structured adaptive mesh refinement for solving the advection-diffusion equation[J]. Journal on Scientific Computing, 2012, 34(2): 179- 201. 被引量:1
  • 5van Genuchtcn M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of A- merica Journal, 1980, 44(5) :892- 898. 被引量:1
  • 6江春波,张永良,丁则平合编..计算流体力学[M].北京:中国电力出版社,2007:279.
  • 7Celia M A, Bouloutas E T, Zarba R L. A general mass-conservative numerical solution [or the unsaturated flow equation[J]. Water Rsources Research, 1990,26(7):1 483- 1 496. 被引量:1
  • 8章少辉,许迪,李益农.基于混合数值解法的一维全水动力学畦灌模型[J].农业工程学报,2009,25(9):7-14. 被引量:17

二级参考文献13

  • 1章少辉,许迪,李益农,蔡林根.基于SGA和SRFR的畦灌入渗参数与糙率系数优化反演模型(Ⅰ)——模型建立[J].水利学报,2006,37(11):1297-1302. 被引量:23
  • 2李庆杨,关治,白峰杉.数值计算原理[M].北京:清华大学出版社,2002:291-295. 被引量:2
  • 3Vivekanand S, Bhallamudi M S. Hydrodynamic modeling of basin irrigation[J]. Journal of Irrigation and Drainage Engineering, 1996, 123(6): 407-414. 被引量:1
  • 4Strelkoff T S, Katopodes N D. Border irrigation hydraulics with zero-inertia[J]. J Irrig Drain Div, ASCE, 1977, 103 (IR3): 325-342. 被引量:1
  • 5Chen C L. Surface irrigation using kinematic-wave method[J]. J Irrig Drain Div, ASCE, 1970, 96(IR1). 39-46. 被引量:1
  • 6Garcia-Navarro P, Playan E, Zapata N. Solute transport modeling in overland flow applied to fertigation[J]. Joumal of Irrigation and Drainage Engineering, 2000, 126(1): 33-40. 被引量:1
  • 7Bradford S F, Katopodes B F. Finite volume model for non-level basin irrigation[J]. Journal of Irrigation and Drainage Engineering, 2001, 127(4): 216-223. 被引量:1
  • 8Brufau P, Garcia N P, Playan E, et al. Numerical modeling of basin irrigation with an upwind scheme[J]. Journal of Irrigation and Drainage Engineering, 2002, 128(4): 212-223. 被引量:1
  • 9Bradford S F, Sanders B F. Performance of High-Tesolution, Non level Bed, Shallow-Water models[J]. Journal of Engineering Mechanics, 2005, 131(10): 1073-1081. 被引量:1
  • 10闫超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2007:139-167. 被引量:4

共引文献16

同被引文献9

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部