期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Global Zero-relaxation Limit Problem of the Electro-diffusion Model Arising in Electro-Hydrodynamics
1
作者 Ming-hua Yang Si-ming Huang Jin-yi Sun 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第1期241-268,共28页
In this paper,we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations.That is,the paper de... In this paper,we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations.That is,the paper deals with a singular limit problem of{u^(∈)_(t)+u^(∈)·▽u^(∈)-Δu^(∈)+▽P^(∈)=Δφ^(∈)▽φ^(∈),in R^(3)×(0,∞),▽·u^(∈)=0,in R^(3)×(0,∞),n^(∈)_(t)+u^(∈)·▽n^(∈)-Δn^(∈)=-▽·(n^(∈)▽φ^(∈)),in R^(3)×(0,∞),ct+u^(∈)·▽c^(∈)-Δc^(∈)=▽·(c^(∈)▽φ^(∈)),in R^(3)×(0,∞),∈^(-1)φ^(∈)_(t)=Δφ^(∈)-n^(∈)+c^(∈),in R^(3)×(0,∞),(u^(∈),n^(∈),c^(∈),φ^(∈))|t=0=(u0,n0,c0,φ0),in R^(3) involving with a positive,large parameter^(∈).The present work show a case that(u^(∈),n^(∈),c^(∈))stabilizes to(u^(∞),n∞,c∞):=(u,n,c)uniformly with respect to the time variable as^(∈)→+∞with respect to the strong topology in a certain Fourier-Herz space. 展开更多
关键词 fourier-herz space littlewood-Paley decomposition stability limit dissipative system
原文传递
Remark on Mild Solution to the 3D Incompressible Micropolar System in Fourier–Herz Framework
2
作者 Yao NIE Xiao Xin ZHENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第10期1595-1616,共22页
This paper is devoted to investigating the existence and uniqueness of mild solution to the 3D incompressible micropolar fluid system in the Fourier–Herz framework. By taking advantage of microlocal analysis and the ... This paper is devoted to investigating the existence and uniqueness of mild solution to the 3D incompressible micropolar fluid system in the Fourier–Herz framework. By taking advantage of microlocal analysis and the mutual effect in the same frequency range of convection term, we give a special initial data(u0,ω0) whose norm of FB1,q^-1(q>2) is arbitrarily small, however, the couple(u0,ω0) produces a solution which is arbitrarily large in FB1,q^-1 after an arbitrarily short time. This implies the system is ill-posed in the sense of "norm inflation" as q>2. 展开更多
关键词 ILL-POSEDNESS MICROPOLAR SYSTEM fourier-herz space norm inflation
原文传递
THE SINGULAR CONVERGENCE OF A CHEMOTAXIS-FLUID SYSTEM MODELING CORAL FERTILIZATION 被引量:1
3
作者 杨明华 孙晋易 +1 位作者 傅尊伟 王政 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期492-504,共13页
The singular convergence of a chemotaxis-fluid system modeling coral fertilization is justified in spatial dimension three.More precisely,it is shown that a solution of parabolic-parabolic type chemotaxis-fluid system... The singular convergence of a chemotaxis-fluid system modeling coral fertilization is justified in spatial dimension three.More precisely,it is shown that a solution of parabolic-parabolic type chemotaxis-fluid system modeling coral fertilization■converges to that of the parabolic-elliptic type chemotaxis-fluid system modeling coral fertiliz ation■in a certain Fourier-Herz space asε^(-1)→0. 展开更多
关键词 CHEMOTAXIS singular convergence recation diffusion fourier-herz space
下载PDF
广义旋转Navier-Stokes方程解的整体适定性和解析性
4
作者 王伟华 《数学学报(中文版)》 CSCD 北大核心 2020年第5期417-426,共10页
在α和q满足适当的条件下,当初值属于Fourier-Herz空间■q^1-2α(R^3)时,我们建立了广义3维不可压旋转Navier-Stokes方程温和解的整体适定性和解析性.作为推论,我们也给出了广义Navier-Stokes方程的相应结论.
关键词 不可压 旋转流体 fourier-herz空间 分数阶Navier-Stokes方程
原文传递
Stability of Navier–Stokes System with Singular External Force in Fourier–Herz Space
5
作者 De Zai MIN Qing Kai WANG +1 位作者 Gang WU Zhuo Ya YAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第7期1203-1218,共16页
We prove the asymptotic properties of the solutions to the 3D Navier–Stokes system with singular external force, by making use of Fourier localization method, the Littlewood–Paley theory and some subtle estimates in... We prove the asymptotic properties of the solutions to the 3D Navier–Stokes system with singular external force, by making use of Fourier localization method, the Littlewood–Paley theory and some subtle estimates in Fourier–Herz space. The main idea of the proof is motivated by that of Cannone et al. [J. Differential Equations, 314, 316–339(2022)]. We deal either with the nonstationary problem or with the stationary problem where solution may be singular due to singular external force. In this paper, the Fourier–Herz space includes the function space of pseudomeasure type used in Cannone et al. [J. Differential Equations, 314, 316–339(2022)] 展开更多
关键词 3D Navier–Stokes equations fourierherz spaces singular external force Littlewood–Paley theory STABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部