期刊文献+

Global Zero-relaxation Limit Problem of the Electro-diffusion Model Arising in Electro-Hydrodynamics

原文传递
导出
摘要 In this paper,we study a global zero-relaxation limit problem of the electro-diffusion model arising in electro-hydrodynamics which is the coupled Planck-Nernst-Poisson and Navier-Stokes equations.That is,the paper deals with a singular limit problem of{u^(∈)_(t)+u^(∈)·▽u^(∈)-Δu^(∈)+▽P^(∈)=Δφ^(∈)▽φ^(∈),in R^(3)×(0,∞),▽·u^(∈)=0,in R^(3)×(0,∞),n^(∈)_(t)+u^(∈)·▽n^(∈)-Δn^(∈)=-▽·(n^(∈)▽φ^(∈)),in R^(3)×(0,∞),ct+u^(∈)·▽c^(∈)-Δc^(∈)=▽·(c^(∈)▽φ^(∈)),in R^(3)×(0,∞),∈^(-1)φ^(∈)_(t)=Δφ^(∈)-n^(∈)+c^(∈),in R^(3)×(0,∞),(u^(∈),n^(∈),c^(∈),φ^(∈))|t=0=(u0,n0,c0,φ0),in R^(3) involving with a positive,large parameter^(∈).The present work show a case that(u^(∈),n^(∈),c^(∈))stabilizes to(u^(∞),n∞,c∞):=(u,n,c)uniformly with respect to the time variable as^(∈)→+∞with respect to the strong topology in a certain Fourier-Herz space.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第1期241-268,共28页 应用数学学报(英文版)
基金 partial supported by the National Natural Science Foundation of China (Grant Nos. 12161041, 11801236) Training Program for academic and technical leaders of major disciplines in Jiangxi Province (Grant No.20204BCJL23057) Natural Science Foundation of Jiangxi Province (Grant Nos.20212BAB201008 and 20232BAB201013) partial supported by the National Natural Science Foundation of China (Grant Nos. 12001435, 12361050) College Teachers Innovation Fund Project of Gansu Provincial Education Department (2023A-002)。
  • 相关文献

参考文献1

二级参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部