Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a...Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a need for reliable and operational methods to monitor and map these disturbances for the development of suitable management strategies.While susceptibility assessment using machine learning methods has increased,most studies have focused on a single disturbance.Moreover,there has been limited exploration of the use of“Automated Machine Learning(AutoML)”in the literature.In this study,susceptibility assessment for multiple forest disturbances(fires,insect damage,and wind damage)was conducted using the PyCaret AutoML framework in the Izmir Regional Forest Directorate(RFD)in Turkey.The AutoML framework compared 14 machine learning algorithms and ranked the best models based on AUC(area under the curve)values.The extra tree classifier(ET)algorithm was selected for modeling the susceptibility of each disturbance due to its good performance(AUC values>0.98).The study evaluated susceptibilities for both individual and multiple disturbances,creating a total of four susceptibility maps using fifteen driving factors in the assessment.According to the results,82.5%of forested areas in the Izmir RFD are susceptible to multiple disturbances at high and very high levels.Additionally,a potential forest disturbances map was created,revealing that 15.6%of forested areas in the Izmir RFD may experience no damage from the disturbances considered,while 54.2%could face damage from all three disturbances.The SHAP(Shapley Additive exPlanations)methodology was applied to evaluate the importance of features on prediction and the nonlinear relationship between explanatory features and susceptibility to disturbance.展开更多
Although it has been recognized that soils play a critical role in carbon storage and that coastal temperate forests have considerable potential to sequester soil organic carbon (SOC), studies related to SOC stocks an...Although it has been recognized that soils play a critical role in carbon storage and that coastal temperate forests have considerable potential to sequester soil organic carbon (SOC), studies related to SOC stocks and stability are scarce in these ecosystems. Forest disturbances may leave legacies on SOC properties and may further compromise SOC storage capacity of these ecosystems. In the Pacific Spirit Regional Park of southwestern British Columbia, we compared SOC stocks and stability among three second-growth forests that have been affected by disturbances of different magnitudes. We collected data on soil chemical and physical properties to estimate SOC content and assess SOC stability. We found that SOC stocks in the forest characterized by low magnitude disturbance were greater than those of the forest characterized by high magnitude disturbance (8.2 ± 1.3 kg·Cm<sup>-2</sup> versus 5.3 ± 0.1 kg·Cm<sup>-2</sup> to 30 cm depth). SOC was less stable in the highly disturbed forest and subsequent vegetation changes might have further reduced SOC stability. Our results provide insight into the role of disturbance history in the current SOC storage capacity of coastal temperate rainforests of British Columbia.展开更多
Background: We investigated the impact of human recreational disturbances on the distribution of birds along a popular nature trail in Sinhararja World Heritage Forest, Sri Lanka. It was hypothesized that visual and n...Background: We investigated the impact of human recreational disturbances on the distribution of birds along a popular nature trail in Sinhararja World Heritage Forest, Sri Lanka. It was hypothesized that visual and noise stimuli caused by the presence of humans affect the distribution of avifauna associated with this nature trail.Methods: Nine circular plots of 25 m fixed-radius laid along the trail(0 m), and 18 plots laid perpendicular to the trail at 75 and 150 m intervals, were studied from March 2013 to January 2014. The degree of human recreational disturbances was assessed in terms of visitor group size(visual disturbance) and their noise level(sound disturbance). These disturbances were categorized along a four-point scale(no human disturbance, low, medium and high disturbance). The relationship between disturbance levels and the abundance of birds was statistically tested.Results: ANOVA results revealed that the abundance of birds differed significantly under various intensities of recreational disturbances at each distance level. A significant negative correlation between abundance of birds and intensity of disturbance at 0 m distance suggests an avoidance of edge habitats by birds in the presence of humans. Abundance of birds increased at the 75 and 150 m distance levels with increasing disturbances occurring at the trail. Significant negative correlations were further observed between disturbance level and the abundance of birds in ground/understory and sub-canopy vertical strata of the forest at 0 m distance.Conclusions: Under high levels of recreational disturbance occurring at this trail, the abundance of birds near the trail declined significantly, while bird abundance in the interior of the forest increased. The sensitivity of individual bird species to visitor disturbances varied with the vertical stratum of the forest they usually occupy. Birds occupying the ground, understory and sub-canopy are particularly sensitive to recreational disturbances while bird species occupying the canopy and abov展开更多
Assessing carbon (C) sequestration in forest ecosystems is fundamental to supply information to monitoring, reporting and verification (MRV) for reducing deforestation and forest degradation (REDD). The spatially-expl...Assessing carbon (C) sequestration in forest ecosystems is fundamental to supply information to monitoring, reporting and verification (MRV) for reducing deforestation and forest degradation (REDD). The spatially-explicit version of Forest-DNDC (FDNDC) was evaluated using plot-based observations from Nez Perce-Clearwater National Forest (NPCNF) in Idaho of United States and used to assess C stocks in?about 16,000 km2. The model evaluation indicated that the FDNDC can be used to assess C stocks with disturbances in this temperate forest with a proper model performance efficiency and small error between observations and simulations. Aboveground biomass in this forest was 85.1 Mg C ha-1 in 2010. The mean aboveground biomass in the forest increased by about 0.6 Mg C ha-1 yr-1 in the last 20 years from 1990 to 2010 with spatial mean stand age about 98 years old in 2010. Spatial differences in distributions of biomass, net primary production and net ecosystem product are substantial. The spatial divergence in C sequestration is mainly associated with the spatial disparities in stand age due to disturbances, secondly with ecological drivers and species. Climate variability and change can substantially impact C stocks in the forest based on the climatic variability of spatial climate data for a 33-year period from 1981 to 2013. Temperature rise can produce more biomass in NPCNF, but biomass cannot increase with an increase in precipitation in this forest. The simulation with disturbances using observations and estimates for the time period from 1991 to 2011?showed the effects of disturbances on C stocks in forests. The impacts of fires and insects on C stocks in this forest are highly dependent on the severity, the higher, the more C loss to atmosphere due to?fires, and the more dead woods produced by fires and insects. The rates of biomass increase with an increase in stand age are different among the species. The changes in forest C stocks?in the forest are almost species specific, non-linear and complex. The increase 展开更多
A study was conducted to investigate the effects of skid trail slope and traffic levels on soil disturbances at two soil depths (0--10 and 10-20 cm). The treatments were set at four traffic levels (2, 7, 12 and 20...A study was conducted to investigate the effects of skid trail slope and traffic levels on soil disturbances at two soil depths (0--10 and 10-20 cm). The treatments were set at four traffic levels (2, 7, 12 and 20) two slope classes (〈20% and 〉20%) and two soil depths (0-10 and 10-20 cm). Results show that skidder traffic, longitudinal slope and soil depth have significant effect on soil bulk density in skid trail. Compari- son of average soil bulk density in different traffic levels shows that there are significant differences in average bulk density between different traffic levels and control (p〈0.05). The average bulk densities in different slopes and soil depths are significantly increased with increase in traffic levels, maximized at 12 passes (p〈0.05), but there are no significant differences between 12 and 20 passes. The interaction effects between traffic and soil depth are significant (F005,3=0.109, p〈0.001). For all traffic treatments, there are significant differences in soil moisture con- tent between the two slope classes and the two depths (p〈0.001). However, the interaction effects between traffic levels and slope classes are not significant (p 〉0.05), although skidder traffic and slope affected soil moisture content.展开更多
The longleaf pine(Pinus palustris Mill.)ecosystem is an endangered ecosystem in the southeastern USA,and efforts to restore the species are ongoing.However,in recent decades,the region has experienced drastic fluctuat...The longleaf pine(Pinus palustris Mill.)ecosystem is an endangered ecosystem in the southeastern USA,and efforts to restore the species are ongoing.However,in recent decades,the region has experienced drastic fluctuations between wet and dry growing season conditions from year to year,and it is not fully understood how these fluctuations have influenced the growth of P.palustris.To address this topic,we cored P.palustris trees in woodlands of southwest Georgia and used dendrochronology techniques to determine how climate fluctuations have influenced the growth and drought resilience of P.palustris.We also cored slash pine(Pinus elliottii Engelm.)trees in the same woodlands to compare growth between species.While P.palustris growth was less impacted by adverse climate conditions compared to P.elliottii,the strength of correlations between P.palustris growth and temperature,precipitation,and Palmer Drought Severity Index(PDSI)changed over time.In recent decades,climate conditions during the growing season became more influential on P.palustris growth than the previous year's conditions.This is concerning given that drought severity during the growing season has been increasing.Our results also indicate that P.palustris was less resilient to droughts during the 2000s and 2010s than to those of the 1950s.Under this new climate paradigm,our results suggest that P.palustris might be more susceptible to growth reductions and less resistant to droughts than once expected.This work highlights the importance of understanding the impact of novel climate conditions on P.palustris and has implications for restoration efforts,such as using silvicultural treatments that reduce tree vulnerability to drought(e.g.,thinning)and promote other climate-adapted species in mixture with P.palustris.展开更多
The purpose of this study was to evaluate the effects of Broussonetia papyrifera(paper mulberry)invasion and land use on the floristic composition of a dry semideciduous forest in Ghana.Forty-five plots(25 m×25 m...The purpose of this study was to evaluate the effects of Broussonetia papyrifera(paper mulberry)invasion and land use on the floristic composition of a dry semideciduous forest in Ghana.Forty-five plots(25 m×25 m each),distributed among three land uses-selectively logged(SL);abandoned farmlands(AF);and an undisturbed reference(RF)-were surveyed.Results showed lower tree species richness(S),diversity(H’),evenness(S)and basal area(BA)in the SL(46,0.78,0.32 and 269.12 m2 ha-1,respectively)and AF(40,0.53,0.45,and 131.16 m^2 ha^-1)sites compared to the RF site(79,2.66,0.87,963.72 m^2 ha^-1).Similar patterns were found at the shrub layer,but no differences were observed at the herb layer.Non-metric multidimensional scaling ordination revealed distinct species composition among the land uses.The two disturbed habitats,SL and AF,were associated with increased B.papyrifera invasion particularly in the overstory,with importance value index and mean relative density of 45 and 65.03%,and 42 and 53.29%,correspondingly.However,the species was only sparsely represented in the RF site.Tree density of B.papyrifera correlated negatively with H’,S,E,BA,and native tree density and richness.These findings highlight the strong link between human land use(i.e.,logging and slash-andburn farming),invasion,and vegetation characteristics,and suggest the need to limit these disturbances to conserve biodiversity within tropical forest ecosystems.展开更多
文摘Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a need for reliable and operational methods to monitor and map these disturbances for the development of suitable management strategies.While susceptibility assessment using machine learning methods has increased,most studies have focused on a single disturbance.Moreover,there has been limited exploration of the use of“Automated Machine Learning(AutoML)”in the literature.In this study,susceptibility assessment for multiple forest disturbances(fires,insect damage,and wind damage)was conducted using the PyCaret AutoML framework in the Izmir Regional Forest Directorate(RFD)in Turkey.The AutoML framework compared 14 machine learning algorithms and ranked the best models based on AUC(area under the curve)values.The extra tree classifier(ET)algorithm was selected for modeling the susceptibility of each disturbance due to its good performance(AUC values>0.98).The study evaluated susceptibilities for both individual and multiple disturbances,creating a total of four susceptibility maps using fifteen driving factors in the assessment.According to the results,82.5%of forested areas in the Izmir RFD are susceptible to multiple disturbances at high and very high levels.Additionally,a potential forest disturbances map was created,revealing that 15.6%of forested areas in the Izmir RFD may experience no damage from the disturbances considered,while 54.2%could face damage from all three disturbances.The SHAP(Shapley Additive exPlanations)methodology was applied to evaluate the importance of features on prediction and the nonlinear relationship between explanatory features and susceptibility to disturbance.
文摘Although it has been recognized that soils play a critical role in carbon storage and that coastal temperate forests have considerable potential to sequester soil organic carbon (SOC), studies related to SOC stocks and stability are scarce in these ecosystems. Forest disturbances may leave legacies on SOC properties and may further compromise SOC storage capacity of these ecosystems. In the Pacific Spirit Regional Park of southwestern British Columbia, we compared SOC stocks and stability among three second-growth forests that have been affected by disturbances of different magnitudes. We collected data on soil chemical and physical properties to estimate SOC content and assess SOC stability. We found that SOC stocks in the forest characterized by low magnitude disturbance were greater than those of the forest characterized by high magnitude disturbance (8.2 ± 1.3 kg·Cm<sup>-2</sup> versus 5.3 ± 0.1 kg·Cm<sup>-2</sup> to 30 cm depth). SOC was less stable in the highly disturbed forest and subsequent vegetation changes might have further reduced SOC stability. Our results provide insight into the role of disturbance history in the current SOC storage capacity of coastal temperate rainforests of British Columbia.
文摘Background: We investigated the impact of human recreational disturbances on the distribution of birds along a popular nature trail in Sinhararja World Heritage Forest, Sri Lanka. It was hypothesized that visual and noise stimuli caused by the presence of humans affect the distribution of avifauna associated with this nature trail.Methods: Nine circular plots of 25 m fixed-radius laid along the trail(0 m), and 18 plots laid perpendicular to the trail at 75 and 150 m intervals, were studied from March 2013 to January 2014. The degree of human recreational disturbances was assessed in terms of visitor group size(visual disturbance) and their noise level(sound disturbance). These disturbances were categorized along a four-point scale(no human disturbance, low, medium and high disturbance). The relationship between disturbance levels and the abundance of birds was statistically tested.Results: ANOVA results revealed that the abundance of birds differed significantly under various intensities of recreational disturbances at each distance level. A significant negative correlation between abundance of birds and intensity of disturbance at 0 m distance suggests an avoidance of edge habitats by birds in the presence of humans. Abundance of birds increased at the 75 and 150 m distance levels with increasing disturbances occurring at the trail. Significant negative correlations were further observed between disturbance level and the abundance of birds in ground/understory and sub-canopy vertical strata of the forest at 0 m distance.Conclusions: Under high levels of recreational disturbance occurring at this trail, the abundance of birds near the trail declined significantly, while bird abundance in the interior of the forest increased. The sensitivity of individual bird species to visitor disturbances varied with the vertical stratum of the forest they usually occupy. Birds occupying the ground, understory and sub-canopy are particularly sensitive to recreational disturbances while bird species occupying the canopy and abov
文摘Assessing carbon (C) sequestration in forest ecosystems is fundamental to supply information to monitoring, reporting and verification (MRV) for reducing deforestation and forest degradation (REDD). The spatially-explicit version of Forest-DNDC (FDNDC) was evaluated using plot-based observations from Nez Perce-Clearwater National Forest (NPCNF) in Idaho of United States and used to assess C stocks in?about 16,000 km2. The model evaluation indicated that the FDNDC can be used to assess C stocks with disturbances in this temperate forest with a proper model performance efficiency and small error between observations and simulations. Aboveground biomass in this forest was 85.1 Mg C ha-1 in 2010. The mean aboveground biomass in the forest increased by about 0.6 Mg C ha-1 yr-1 in the last 20 years from 1990 to 2010 with spatial mean stand age about 98 years old in 2010. Spatial differences in distributions of biomass, net primary production and net ecosystem product are substantial. The spatial divergence in C sequestration is mainly associated with the spatial disparities in stand age due to disturbances, secondly with ecological drivers and species. Climate variability and change can substantially impact C stocks in the forest based on the climatic variability of spatial climate data for a 33-year period from 1981 to 2013. Temperature rise can produce more biomass in NPCNF, but biomass cannot increase with an increase in precipitation in this forest. The simulation with disturbances using observations and estimates for the time period from 1991 to 2011?showed the effects of disturbances on C stocks in forests. The impacts of fires and insects on C stocks in this forest are highly dependent on the severity, the higher, the more C loss to atmosphere due to?fires, and the more dead woods produced by fires and insects. The rates of biomass increase with an increase in stand age are different among the species. The changes in forest C stocks?in the forest are almost species specific, non-linear and complex. The increase
文摘A study was conducted to investigate the effects of skid trail slope and traffic levels on soil disturbances at two soil depths (0--10 and 10-20 cm). The treatments were set at four traffic levels (2, 7, 12 and 20) two slope classes (〈20% and 〉20%) and two soil depths (0-10 and 10-20 cm). Results show that skidder traffic, longitudinal slope and soil depth have significant effect on soil bulk density in skid trail. Compari- son of average soil bulk density in different traffic levels shows that there are significant differences in average bulk density between different traffic levels and control (p〈0.05). The average bulk densities in different slopes and soil depths are significantly increased with increase in traffic levels, maximized at 12 passes (p〈0.05), but there are no significant differences between 12 and 20 passes. The interaction effects between traffic and soil depth are significant (F005,3=0.109, p〈0.001). For all traffic treatments, there are significant differences in soil moisture con- tent between the two slope classes and the two depths (p〈0.001). However, the interaction effects between traffic levels and slope classes are not significant (p 〉0.05), although skidder traffic and slope affected soil moisture content.
基金funded through a Ph D scholarship (2021.05104.BD) funded by the Portuguese Foundation for Science and Technology (FCT)a Fulbright grant with the support of FCTsupported by The Jones Center at Ichauway
文摘The longleaf pine(Pinus palustris Mill.)ecosystem is an endangered ecosystem in the southeastern USA,and efforts to restore the species are ongoing.However,in recent decades,the region has experienced drastic fluctuations between wet and dry growing season conditions from year to year,and it is not fully understood how these fluctuations have influenced the growth of P.palustris.To address this topic,we cored P.palustris trees in woodlands of southwest Georgia and used dendrochronology techniques to determine how climate fluctuations have influenced the growth and drought resilience of P.palustris.We also cored slash pine(Pinus elliottii Engelm.)trees in the same woodlands to compare growth between species.While P.palustris growth was less impacted by adverse climate conditions compared to P.elliottii,the strength of correlations between P.palustris growth and temperature,precipitation,and Palmer Drought Severity Index(PDSI)changed over time.In recent decades,climate conditions during the growing season became more influential on P.palustris growth than the previous year's conditions.This is concerning given that drought severity during the growing season has been increasing.Our results also indicate that P.palustris was less resilient to droughts during the 2000s and 2010s than to those of the 1950s.Under this new climate paradigm,our results suggest that P.palustris might be more susceptible to growth reductions and less resistant to droughts than once expected.This work highlights the importance of understanding the impact of novel climate conditions on P.palustris and has implications for restoration efforts,such as using silvicultural treatments that reduce tree vulnerability to drought(e.g.,thinning)and promote other climate-adapted species in mixture with P.palustris.
基金supported by the Institute for Environmental and Sanitation Studies,University Ghana,Legon,Accra,Ghana
文摘The purpose of this study was to evaluate the effects of Broussonetia papyrifera(paper mulberry)invasion and land use on the floristic composition of a dry semideciduous forest in Ghana.Forty-five plots(25 m×25 m each),distributed among three land uses-selectively logged(SL);abandoned farmlands(AF);and an undisturbed reference(RF)-were surveyed.Results showed lower tree species richness(S),diversity(H’),evenness(S)and basal area(BA)in the SL(46,0.78,0.32 and 269.12 m2 ha-1,respectively)and AF(40,0.53,0.45,and 131.16 m^2 ha^-1)sites compared to the RF site(79,2.66,0.87,963.72 m^2 ha^-1).Similar patterns were found at the shrub layer,but no differences were observed at the herb layer.Non-metric multidimensional scaling ordination revealed distinct species composition among the land uses.The two disturbed habitats,SL and AF,were associated with increased B.papyrifera invasion particularly in the overstory,with importance value index and mean relative density of 45 and 65.03%,and 42 and 53.29%,correspondingly.However,the species was only sparsely represented in the RF site.Tree density of B.papyrifera correlated negatively with H’,S,E,BA,and native tree density and richness.These findings highlight the strong link between human land use(i.e.,logging and slash-andburn farming),invasion,and vegetation characteristics,and suggest the need to limit these disturbances to conserve biodiversity within tropical forest ecosystems.