期刊文献+

基于Bootstrapping支持向量机算法的森林干扰遥感监测 被引量:5

Monitoring Forest Disturbances with Bootstrapping Support Vector Machine Algorithm
原文传递
导出
摘要 森林干扰在全球和区域碳平衡、气候变化、植被生产力、蒸散发等多方面都有着重要的影响.遥感技术以其在动态监测中经济便捷的优势而成为大尺度森林干扰监测的主要手段.本文以大兴安岭为研究区域,利用2006年1km分辨率的MODIS反射率、LST和NDVI数据,有效提取归一化森林干扰变化信息.针对本研究扰动象元点与非扰动象元点存在较大差异的不平衡性问题,对比了SVM,one class SVM(OCSVM),和bootstrapping SVM分类器在不平衡分类中的效果,结果表明,bootstrapping SVM能够获得更稳定的模型和更高的精度,总体精度达99.14%,kappa系数为0.87,说明基于MODIS粗分辨率数据和bootstrapping SVM算法可以克服不平衡分类问题、有效提取森林干扰区域,可作为一种经济可行的对大区域甚至全球森林干扰监测的方法. Forest disturbances play significant roles in carbon balance and global climate changes. Due to its advantages of macro-scale and cost-effectiveness, time-series MODIS data are a striking data source for monitoring forest cover and forest loss.With l km resolution MODIS data in 2006, this study extracted feature metrics which capturing the salient features of phonological variations to reveal the forest disturbances in the Great Khingan, the largest forestry area in China.Due to the notably imbalanced"change" and"no-change" pixels, this study compared Support Vector Machine(SVM) , one class SVM and bootstrapping SVM in forest disturbance detection. The results showed that bootstrapping SVM produced the best classification performance with its overall accuracy and kappa coefficient being 99.14% and 0.87, respectively. A bootstrapping SVM model, therefore, can be used as an effective tool for monitoring forest disturbances in large areas even for the global scale when the MODIS data is used.
出处 《应用基础与工程科学学报》 EI CSCD 北大核心 2015年第2期308-317,共10页 Journal of Basic Science and Engineering
基金 国家自然科学基金项目(50979003)
关键词 森林干扰 MODIS BOOTSTRAPPING SVM 不平衡分类 forest disturbances MODIS bootstrapping SVM imbalanced classification
  • 相关文献

参考文献31

  • 1杨辰,沈润平,郁达威,刘荣高,陈镜明.利用遥感指数时间序列轨迹监测森林扰动[J].遥感学报,2013,17(5):1246-1263. 被引量:19
  • 2Goetz S J,Fiske G J,Bunn A G.Using satellite time-series data sets to analyze fire disturbance and forest recovery acrossCanada[ J] .Remote Sensing of Environment,2006,101:352-365. 被引量:1
  • 3Suming J, Sader S.MODIS time-series imagery for forest disturbance detection and quantification of patch size effects[J].Remote Sensing of Environment,2005,99:462-470. 被引量:1
  • 4Chuvieco E,WKasischke E S. Remote sensing information for fire management and fire effects assessment [ J ].Geophysical Research, 2007,112 ( GO 1S90) , doi : 10.1029/2006JG000230. 被引量:1
  • 5Masek J G, Huang C, Wolfe R, et al. North American forest disturbance mapped from a decadal Landsat record [ J ].Remote Sensing of Environment, 2008,112 : 2914-2926. 被引量:1
  • 6Tansey K, Grfigoire J M, Binaghi E,et al.A global inventory of burned areas at lkm resolution for the year 2000derivedfrom SPOT Vegetation data[ J] .Climate Change,2004,67 :345-377. 被引量:1
  • 7Ranson K J, WKovacs K, Sun G, et al. Disturbance recognition in the boreal forest using radar and Landsat-7 [ J ].Canadian Journal of Remote Sensing, 2003,29 (2 ) : 271-285. 被引量:1
  • 8王瑞..针对类别不平衡和代价敏感分类问题的特征选择和分类算法[D].中国科学技术大学,2013:
  • 9Tang,Y C,Zhang, Y Q,Nitesh,V,et al.SVMs modeling for highly imbalanced classification[ J] .Journal of Latex ClassFiles,2002,l(ll) :1-9. 被引量:1
  • 10Bazi Y, Melgani F. Toward an optimal SVM classification system for hyperspectral remote sensing images [ J ]. IEEETransaction on Geoscience and Remote Sensing, 2006,44 : 3374-3385. 被引量:1

二级参考文献33

  • 1李德仁.利用遥感影像进行变化检测[J].武汉大学学报(信息科学版),2003,28(S1):7-12. 被引量:230
  • 2胡海清.大兴安岭主要森林可燃物理化性质测定与分析[J].森林防火,1995(1):27-31. 被引量:61
  • 3孙丹,姚树人,韩焕金,陈小华.雷击火形成、分布和监测研究综述[J].森林防火,2006(2):11-14. 被引量:21
  • 4郑焕能 邸雪颖 姚树人.中国林火[M].哈尔滨:东北林业大学出版社,1993.. 被引量:21
  • 5范维澄,王清安,张人杰,等.火灾科学导论[M].武汉:湖北科学技术出版社,1995. 被引量:1
  • 6郑焕能 杜秀文.大兴安岭地区森林可燃物类型初步研究.森林防火,1986,(2):11-12. 被引量:3
  • 7Chander G, Markham B L and Helder D L. 2009. Summary of current mdiometric calibration coefficients for Landsat MSS, TM, ETM +, and EO-1 ALl sensors. Remote Sensing of Environment, 113(5): 893-903 [DOI: 10.1016/j.rse2009.01.007. 被引量:1
  • 8Crist E P. 1985. A tm tasseled cap equivalent transformation for reflec- lance factor data. Remote Sensing of Environment, 17 (3): 301 - 306 [ DOI: 10.1016/0034-4257(85)90102-6 ]. 被引量:1
  • 9Coops N C, Wu|der M A and lwanicka D. 2009. Large area monitoring with a MODIS-based Disturbance Index (DI) sensitive to annual and seasonal variations. Remote Sensing of Environment, 113 (6): 1250-1261 [DOI: 10.1016/j.rse.2009.02.015 ]. 被引量:1
  • 10DeRose R J, Long J N and Ramsey R D. 2011. Combining dendrochro- nological data and the disturbance index to assess Engelmann spruce mortality caused by a spruce beetle outbreak in southem Utah, USA. Remote Sensing of Environment, 115 (9): 2342 - 2349 [DOI: 10. 1016/j.rse.2011.04.034]. 被引量:1

共引文献34

同被引文献41

引证文献5

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部