飞轮是卫星姿态控制系统中的主要执行部件,实现其自主故障检测与恢复对于维持卫星正常姿态具有很重要的意义.在建立了精确飞轮开环系统模型的基础上,设计了二阶非线性连续扩张状态观测器ESO(Extended State Observer).将飞轮故障视为系...飞轮是卫星姿态控制系统中的主要执行部件,实现其自主故障检测与恢复对于维持卫星正常姿态具有很重要的意义.在建立了精确飞轮开环系统模型的基础上,设计了二阶非线性连续扩张状态观测器ESO(Extended State Observer).将飞轮故障视为系统外扰,并假设其余外扰是小量可忽略,则利用此ESO不仅能实时得到飞轮开环系统的状态量,当飞轮发生故障时更能快速准确地估计出故障量.因而无需产生系统残差即可直接进行故障检测,同时根据故障量的大小对系统输入即驱动电压进行补偿,使飞轮转速仍能维持正常值,保证卫星姿态不受故障影响.数值仿真验证了此方法的有效性.展开更多
This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias princ...This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias principle, a satellite ACSs with actuator fault is transformed into an augmented nonlinear discrete stochastic model; then, a novel TSEKF is suggested such that it can simultane- ously estimate satellite attitude information and actuator faults no matter they are additive or mul- tiplicative; finally, the proposed approach is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in satellite ACSs, and simulation results demonstrate the effec- tiveness of the proposed fault estimation approach.展开更多
A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor ...A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guaran- tee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter's value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.展开更多
Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC...Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC-DC converters and presents an application of the variable structure system theory with associated sliding regimes. Firstly, the topology of reaction flywheel is constructed. The small signal linearization process for a buck converter is illustrated. Then, based on the state averaging models and reaching qualification expressed by the Lee derivative, the general results of the sliding mode control (SMC) are analyzed. The analytical equivalent control laws for reaction flywheel are deduced detailedly by selecting various sliding surfaces at electromotion, energy consumption braking, reverse connection braking stages. Finally, numerical and experimental examples are presented for illustrative purposes. The results demonstrate that favorable agreement is established between the simulations and experiments. The proposed control strategy achieves preferable rotational speed regulation, strong rejection of modest disturbances, and high-precision output torque and rotational speed tracking abilities.展开更多
Considering the nonlinear, multifunctional properties of double-flywheel with closed- loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the m...Considering the nonlinear, multifunctional properties of double-flywheel with closed- loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of "integrated power and attitude control" system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS) can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the teachability-plot. Finally, the last step of proposed model is used to define the rela- tionship of parameters in each operation through the principal component analysis (PCA) method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.展开更多
A characteristic model based all-coefficient adaptive control law was recently implemented on an experimental test rig for high-speed energy storage flywheels suspended on magnetic bearings. Such a control law is an i...A characteristic model based all-coefficient adaptive control law was recently implemented on an experimental test rig for high-speed energy storage flywheels suspended on magnetic bearings. Such a control law is an intelligent control law, as its design does not rely on a pre-established mathematical model of a plant but identifies its characteristic model while the plant is being controlled. Extensive numerical simulations and experimental results indicated that this intelligent control law outperforms a μ-synthesis control law, originally designed when the experimental platform was built in terms of their ability to suppress vibration on the high-speed test rig. We further establish, through an extensive simulation, that this intelligent control law possesses considerable robustness with respect to plant uncertainties, external disturbances, and time delay.展开更多
文摘磁悬浮飞轮转子在高转速下表现出的陀螺效应是影响系统稳定性的主要因素.为了提高磁悬浮飞轮的失稳转速,针对陀螺效应引起的系统章动失稳和进动失稳,提出了一种基于转速的增益预调交叉反馈控制方法,针对不同的转速段,建立在线控制相对应的交叉反馈通道增益和带宽参数表,对进动模态和章动模态分别实现交叉相位补偿.采用该控制方法用经典控制理论中的根轨迹法对系统的章动稳定性进行了仿真并对控制参数进行了优化.仿真和实验结果表明,采用这种基于转速的增益预调交叉反馈的控制算法,能够有效地抑制磁悬浮飞轮转子陀螺效应所导致的章动失稳,所设计的磁悬浮飞轮原理样机能够稳定运行在其额定转速30 000 r/m in.
文摘飞轮是卫星姿态控制系统中的主要执行部件,实现其自主故障检测与恢复对于维持卫星正常姿态具有很重要的意义.在建立了精确飞轮开环系统模型的基础上,设计了二阶非线性连续扩张状态观测器ESO(Extended State Observer).将飞轮故障视为系统外扰,并假设其余外扰是小量可忽略,则利用此ESO不仅能实时得到飞轮开环系统的状态量,当飞轮发生故障时更能快速准确地估计出故障量.因而无需产生系统残差即可直接进行故障检测,同时根据故障量的大小对系统输入即驱动电压进行补偿,使飞轮转速仍能维持正常值,保证卫星姿态不受故障影响.数值仿真验证了此方法的有效性.
文摘This paper investigates the problem of two-stage extended Kalman filter (TSEKF)-based fault estimation for reaction flywheels in satellite attitude control systems (ACSs). Firstly, based on the separate-bias principle, a satellite ACSs with actuator fault is transformed into an augmented nonlinear discrete stochastic model; then, a novel TSEKF is suggested such that it can simultane- ously estimate satellite attitude information and actuator faults no matter they are additive or mul- tiplicative; finally, the proposed approach is respectively applied to estimating bias faults and loss of effectiveness for reaction flywheels in satellite ACSs, and simulation results demonstrate the effec- tiveness of the proposed fault estimation approach.
基金National Natural Science Foundation of China(10902003)
文摘A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guaran- tee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter's value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.
基金supported by the National Natural Science Foundation of China(No.61121003)
文摘Reaction flywheel is a significant actuator for satellites' attitude control. To improve output torque and rotational speed accuracy for reaction flywheel, this paper reviews the modeling and control approaches of DC-DC converters and presents an application of the variable structure system theory with associated sliding regimes. Firstly, the topology of reaction flywheel is constructed. The small signal linearization process for a buck converter is illustrated. Then, based on the state averaging models and reaching qualification expressed by the Lee derivative, the general results of the sliding mode control (SMC) are analyzed. The analytical equivalent control laws for reaction flywheel are deduced detailedly by selecting various sliding surfaces at electromotion, energy consumption braking, reverse connection braking stages. Finally, numerical and experimental examples are presented for illustrative purposes. The results demonstrate that favorable agreement is established between the simulations and experiments. The proposed control strategy achieves preferable rotational speed regulation, strong rejection of modest disturbances, and high-precision output torque and rotational speed tracking abilities.
基金supported by the National Basic Research Program of China(No.2012CB720003)
文摘Considering the nonlinear, multifunctional properties of double-flywheel with closed- loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of "integrated power and attitude control" system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS) can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the teachability-plot. Finally, the last step of proposed model is used to define the rela- tionship of parameters in each operation through the principal component analysis (PCA) method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(No.2662018QD031)
文摘A characteristic model based all-coefficient adaptive control law was recently implemented on an experimental test rig for high-speed energy storage flywheels suspended on magnetic bearings. Such a control law is an intelligent control law, as its design does not rely on a pre-established mathematical model of a plant but identifies its characteristic model while the plant is being controlled. Extensive numerical simulations and experimental results indicated that this intelligent control law outperforms a μ-synthesis control law, originally designed when the experimental platform was built in terms of their ability to suppress vibration on the high-speed test rig. We further establish, through an extensive simulation, that this intelligent control law possesses considerable robustness with respect to plant uncertainties, external disturbances, and time delay.