Booming urbanization due to a fast-growing population results in more impervious areas, less infiltration,and hence greater flood peak and runoff. Clear understanding of flood responses in regions with different level...Booming urbanization due to a fast-growing population results in more impervious areas, less infiltration,and hence greater flood peak and runoff. Clear understanding of flood responses in regions with different levels and expansions of urbanization is of great importance for regional urban planning. In this study, comparison of flooding responses to urbanization processes in terms of flood peak and runoff volume in the upper, middle,and lower Xiang River Basin(XRB), China, was carried out using the Hydrologic Engineering Center-Hydrologic Modeling System(HEC-HMS) model. From 2005 to 2015, urbanization level and intensity were higher in the lower XRB compared to the upper and middle XRB, and the overall expansion rate of urban areas was 112.8%.Modeling results by the HEC-HMS model indicate elevated flood peak discharges and volumes due to fast urbanization in the XRB from the 1980 s to 2015. This rapid increase is particularly the case in the lower XRB. The study also revealed different hydrological responses of flood regimes—urbanization tends to have larger impacts on peak flood flow rather than on flood volume in the lowerXRB, which further corroborated urbanization-induced intensifying flood processes in terms of peak flood flow.Urbanization has increasing impacts on flood volume from the upper to the lower XRB, which can be attributed to accumulated runoff down the river system. This study provides a reference for basin-wide land use and urban planning as well as flood hazard mitigation.展开更多
The magnitude of river morphological changes are better analyzed through the use of quantitative approaches, wherein resolution accuracy and uncertainty assessment are treated as crucial key-factors. In this sense, th...The magnitude of river morphological changes are better analyzed through the use of quantitative approaches, wherein resolution accuracy and uncertainty assessment are treated as crucial key-factors. In this sense, the creation of precise DEMs (Digital Elevation Models) of rivers represents an affordable tool to analyze geomorphic variations and budgets, except for wetted areas, where reliable channel digitalization can normally be obtained only using expensive bathymetric surveys. The proposed work aims at improving channel surface models without having available bathymetric sensors, by deriving dry areas elevations from LiDAR data and water depth of wetted areas from aerial photos through a predictive depth-colour relationship. The methodology was applied to two different sub-reaches of the Piave River, a gravel-bed river which suffered severe flood events in 2010. Erosion and deposition patterns were identified through DEM differencing, showing a predominance of scour processes which can lead to channel instability situations. The bathymetric output was compared to other previously-derived models confirming the accuracy of the in-channel elevation estimates. Finally, a discussion on the role played by longitudinal protections during the studied flood events is proposed, focusing the attention on the incidence of two major bank erosions that removed significant volumes of stable areas.展开更多
This document describes the creation of an informative Web GIS aimed at mitigating the impacts of flooding in the municipality of Ouagadougou, in Burkina Faso, a region that is highly sensitive to climate change. Burk...This document describes the creation of an informative Web GIS aimed at mitigating the impacts of flooding in the municipality of Ouagadougou, in Burkina Faso, a region that is highly sensitive to climate change. Burkina Faso, which is undergoing rapid urbanization, faces major natural threats, particularly flooding, as demonstrated by the severe floods of 2009 that caused loss of life, injury, structural damage and economic losses in Ouagadougou. The aim of this research is to develop a web map highlighting the municipality’s flood-prone areas, with a view to informing and raising awareness of flood risk reduction. Using the Leaflet JavaScript mapping library, the study uses HTML, CSS and JavaScript to implement web mapping technology. Data on Ouagadougou’s flood zones is generated by a multi-criteria analysis combining Saaty’s AHP method and GIS in QGIS, integrating seven (7) parameters including hydrography, altitude, slope, rainfall, soil types, land use and soil moisture index. QGIS processes and maps the themes, PostgreSQL with PostGIS serves as the DBMS and GeoServer functions as the map server. The Web GIS platform allows users to visualize the different flood risks, from very low to very high, or the high-risk areas specific to Ouagadougou. The AHP calculations classify the municipality into five flood vulnerability zones: very low (24.48%), low (27.93%), medium (23.01%), high (17.11%) and very high (7.47%). Effective risk management requires communication and awareness-raising. This online mapping application serves as a tool for communication, management and flood prevention in Ouagadougou, helping to mitigate flood-related natural disasters.展开更多
Based on the thermodynamic characteristics of the summer monsoon and foe change of the lower layer wind fields, the relation between the early summer flood periods of southern China, Including the first flood period o...Based on the thermodynamic characteristics of the summer monsoon and foe change of the lower layer wind fields, the relation between the early summer flood periods of southern China, Including the first flood period of South China and the plum rains period of the middle-lower reaches of the Yangtze River and the activities of the summer monsoon is analysed. The establishment processes of the summer monsoon circulation of East Asia are investigated. It is shown that the beginning and ending of the flood periods are exactly in accordance with the arrival and departure of the fore boundary of the summer monsoon. The establishment process of the circulation from the very beginning of the arrival of the monsoon to the time of great prosperity of development are not the same for each year. They can be classified into four categories. Each category may have four or three stages. Besides, the structure of the summer monsoon regime of East Asia is not unitary. There exist four types of structure model of the monsoon regime of East Asia.展开更多
基金supported by the Open Fund of State Key Laboratory of Remote Sensing Science(Grant No.OFSLRSS201720)the National Natural Science Foundation of China(Grant No.41401097+1 种基金 41771536)National Key Research and Development Program Project:Development of the Platform for Dynamic Early Warning and Risk Assessment of Mountain Torrents Disaster(2017YFC1502505)
文摘Booming urbanization due to a fast-growing population results in more impervious areas, less infiltration,and hence greater flood peak and runoff. Clear understanding of flood responses in regions with different levels and expansions of urbanization is of great importance for regional urban planning. In this study, comparison of flooding responses to urbanization processes in terms of flood peak and runoff volume in the upper, middle,and lower Xiang River Basin(XRB), China, was carried out using the Hydrologic Engineering Center-Hydrologic Modeling System(HEC-HMS) model. From 2005 to 2015, urbanization level and intensity were higher in the lower XRB compared to the upper and middle XRB, and the overall expansion rate of urban areas was 112.8%.Modeling results by the HEC-HMS model indicate elevated flood peak discharges and volumes due to fast urbanization in the XRB from the 1980 s to 2015. This rapid increase is particularly the case in the lower XRB. The study also revealed different hydrological responses of flood regimes—urbanization tends to have larger impacts on peak flood flow rather than on flood volume in the lowerXRB, which further corroborated urbanization-induced intensifying flood processes in terms of peak flood flow.Urbanization has increasing impacts on flood volume from the upper to the lower XRB, which can be attributed to accumulated runoff down the river system. This study provides a reference for basin-wide land use and urban planning as well as flood hazard mitigation.
文摘The magnitude of river morphological changes are better analyzed through the use of quantitative approaches, wherein resolution accuracy and uncertainty assessment are treated as crucial key-factors. In this sense, the creation of precise DEMs (Digital Elevation Models) of rivers represents an affordable tool to analyze geomorphic variations and budgets, except for wetted areas, where reliable channel digitalization can normally be obtained only using expensive bathymetric surveys. The proposed work aims at improving channel surface models without having available bathymetric sensors, by deriving dry areas elevations from LiDAR data and water depth of wetted areas from aerial photos through a predictive depth-colour relationship. The methodology was applied to two different sub-reaches of the Piave River, a gravel-bed river which suffered severe flood events in 2010. Erosion and deposition patterns were identified through DEM differencing, showing a predominance of scour processes which can lead to channel instability situations. The bathymetric output was compared to other previously-derived models confirming the accuracy of the in-channel elevation estimates. Finally, a discussion on the role played by longitudinal protections during the studied flood events is proposed, focusing the attention on the incidence of two major bank erosions that removed significant volumes of stable areas.
文摘This document describes the creation of an informative Web GIS aimed at mitigating the impacts of flooding in the municipality of Ouagadougou, in Burkina Faso, a region that is highly sensitive to climate change. Burkina Faso, which is undergoing rapid urbanization, faces major natural threats, particularly flooding, as demonstrated by the severe floods of 2009 that caused loss of life, injury, structural damage and economic losses in Ouagadougou. The aim of this research is to develop a web map highlighting the municipality’s flood-prone areas, with a view to informing and raising awareness of flood risk reduction. Using the Leaflet JavaScript mapping library, the study uses HTML, CSS and JavaScript to implement web mapping technology. Data on Ouagadougou’s flood zones is generated by a multi-criteria analysis combining Saaty’s AHP method and GIS in QGIS, integrating seven (7) parameters including hydrography, altitude, slope, rainfall, soil types, land use and soil moisture index. QGIS processes and maps the themes, PostgreSQL with PostGIS serves as the DBMS and GeoServer functions as the map server. The Web GIS platform allows users to visualize the different flood risks, from very low to very high, or the high-risk areas specific to Ouagadougou. The AHP calculations classify the municipality into five flood vulnerability zones: very low (24.48%), low (27.93%), medium (23.01%), high (17.11%) and very high (7.47%). Effective risk management requires communication and awareness-raising. This online mapping application serves as a tool for communication, management and flood prevention in Ouagadougou, helping to mitigate flood-related natural disasters.
文摘Based on the thermodynamic characteristics of the summer monsoon and foe change of the lower layer wind fields, the relation between the early summer flood periods of southern China, Including the first flood period of South China and the plum rains period of the middle-lower reaches of the Yangtze River and the activities of the summer monsoon is analysed. The establishment processes of the summer monsoon circulation of East Asia are investigated. It is shown that the beginning and ending of the flood periods are exactly in accordance with the arrival and departure of the fore boundary of the summer monsoon. The establishment process of the circulation from the very beginning of the arrival of the monsoon to the time of great prosperity of development are not the same for each year. They can be classified into four categories. Each category may have four or three stages. Besides, the structure of the summer monsoon regime of East Asia is not unitary. There exist four types of structure model of the monsoon regime of East Asia.
文摘1998~2000年,欧盟资助了一项称为CADAM(Concerted Actionon Dambreak Modelling)的所谓溃坝模拟协调行动计划,拟对当时所使用的方法及其在模拟和预报溃坝方面的应用加以研究。针对CADAM项目研究中提炼出来的一些关键技术问题,"IMPACT"欧洲合作工程项目对其展开了研究,IMPACT是CADAM项目的延续。IMPACT(Investigation of ExtreMe Flood Processes And UnCertainTy)项目意为特大洪水过程及其不确定性的研究。主要介绍CADAM项目得出的主要结论和对IMPACT项目进行简要介绍。