The general phenylpropanoid metabolism generates an enormous array of secondary metabolites based on the few intermediates of the shikimate pathway as the core unit. The resulting hydroxycinnamic acids and esters are ...The general phenylpropanoid metabolism generates an enormous array of secondary metabolites based on the few intermediates of the shikimate pathway as the core unit. The resulting hydroxycinnamic acids and esters are am- plified in several cascades by a combination of reductases, oxygenases, and transferases to result in an organ and devel- opmentally specific pattern of metabolites, characteristic for each plant species. During the last decade, methodology driven targeted and non-targeted approaches in several plant species have enabled the identification of the participating enzymes of this complex biosynthetic machinery, and revealed numerous genes, enzymes, and metabolites essential for regulation and compartmentation. Considerable success in structural and computational biology, combined with the an- alytical sensitivity to detect even trace compounds and smallest changes in the metabolite, transcript, or enzyme pattern, has facilitated progress towards a comprehensive view of the plant response to its biotic and abiotic environment. Trans- genic approaches have been used to reveal insights into an apparently redundant gene and enzyme pattern required for functional integrity and plasticity of the various phenylpropanoid biosynthetic pathways. Nevertheless, the function and impact of all members of a gene family remain to be completely established. This review aims to give an update on the various facets of the general phenylpropanoid pathway, which is not only restricted to common lignin or flavonoid biosynthesis, but feeds into a variety of other aromatic metabolites like coumarins, phenolic volatiles, or hydrolyzable tannins.展开更多
本研究探讨葛根有效成分对恶性白血病可能的凋亡诱导作用及其分子机制。采用葛根总黄酮(flavonoids of puerarin,PR)处理人早幼粒细胞白血病(APL)细胞株NB4,用MTT法检测细胞增殖抑制率;FITC-Annexin V/PI双染法检测细胞凋亡率;实时定量...本研究探讨葛根有效成分对恶性白血病可能的凋亡诱导作用及其分子机制。采用葛根总黄酮(flavonoids of puerarin,PR)处理人早幼粒细胞白血病(APL)细胞株NB4,用MTT法检测细胞增殖抑制率;FITC-Annexin V/PI双染法检测细胞凋亡率;实时定量PCR检测pml/rarα、bcl-2、survivin基因表达;Western blot检测JNK、p38MAPK、FasL及caspase相关酶的变化。结果发现,PR能明显抑制NB4细胞增殖,并诱导细胞凋亡。随着PR浓度的增加,pml/rarα、bcl-2及survivin基因在mRNA水平表达下调,JNK、FasL、caspase3及caspase8蛋白表达增加,与PR浓度呈正相关;PR联合三氧化二砷(arsenic trioxide,ATO)处理后上述作用更为明显。结论:PR诱导NB4细胞凋亡的机制可能与JNK相关信号分子的活化有关;PR联合ATO具有协同诱导NB4细胞凋亡的作用。展开更多
Yellow seed trait is a desirable characteristic with potential for increasing seed quality and commercial value in rapeseed,and anthocyanin and proanthocyanidins(PAs)are major seed-coat pigments.Few transcription fact...Yellow seed trait is a desirable characteristic with potential for increasing seed quality and commercial value in rapeseed,and anthocyanin and proanthocyanidins(PAs)are major seed-coat pigments.Few transcription factors involved in the regulation of anthocyanin and PAs biosynthesis have been characterized in rapeseed.In this study,we identified a transcription factor gene BnbHLH92a(BnaA06T0441000ZS)in rapeseed.Overexpressing BnbHLH92a both in Arabidopsis and in rapeseed reduced levels of anthocyanin and PAs.Correspondingly,the expression profiles of anthocyanin and PA biosynthesis genes(TT3,BAN,TT8,TT18,and TTG1)were shown by quantitative real-time PCR to be inhibited in BnbHLH92a-overexpressing Arabidopsis seeds,indicating that BnbHLH92a represses the anthocyanin and PA biosynthesis pathway in Arabidopsis.BnbHLH92a physically interacts with the BnTTG1 protein and represses the biosynthesis of anthocyanins and PAs in rapeseed.BnbHLH92a also binds directly to the BnTT18 promoter and represses its expression.These results suggest that BnbHLH92a is a novel upstream regulator of flavonoid biosynthesis in B.napus.展开更多
Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury,whereby it can inhibit microglial neurotoxicity.Therefore,luteolin holds the potential to be useful fo...Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury,whereby it can inhibit microglial neurotoxicity.Therefore,luteolin holds the potential to be useful for treatment of retinal diseases.The purpose of this study was to investigate whether luteolin exhibits neuroprotective effects on rod cells in rd10 mice,a slow photoreceptor-degenerative model of retinitis pigmentosa.Luteolin(100 mg/kg)intraperitoneally injected daily from postnatal day 14(P14)to P25 significantly enhanced the visual performance and retinal light responses of rd10 mice at P25.Moreover,it increased the survival of photoreceptors and improved retinal structure.Mechanistically,luteolin treatment attenuated increases in reactive oxygen species,photoreceptor apoptosis,and reactive gliosis;increased mRNA levels of anti-inflammatory cytokines while lowering that of pro-inflammatory and chemoattractant cytokines;and lowered the ratio of phospho-JNK/JNK.Application of the JNK inhibitor SP600125 exerted a similar protective effect to luteolin,suggesting that luteolin delays photoreceptor degeneration and functional deterioration in rd10 mice through regulation of retinal oxidation and inflammation by inhibiting the JNK pathway.Therefore,luteolin may be useful as a supplementary treatment for retinitis pigmentosa.This study was approved by the Qualified Ethics Committee of Jinan University,China(approval No.IACUC-20181217-02)on December 17,2018.展开更多
We conducted an integrative system biology of metabolome and transcriptome profile analyses during pomegranate(Punica granatum L.) seed germination and utilized a weighted gene co-expression network analysis(WGCNA) to...We conducted an integrative system biology of metabolome and transcriptome profile analyses during pomegranate(Punica granatum L.) seed germination and utilized a weighted gene co-expression network analysis(WGCNA) to describe the functionality and complexity of the physiological and morphogenetic processes as well as gene expression and metabolic differences during seed germination stages. In total, 489 metabolites were detected, including 40 differentially accumulated metabolites. The transcriptomic analysis showed the expression of 6 984 genes changed significantly throughout the whole germination process. Using WGCNA, we identified modules related to the various seed germination stages and hub genes. In the initial imbibition stage(stage 1), the pivotal genes involved in RNA transduction and the glycolytic pathway were most active, while in the sprouting stage(stage 4), the pivotal genes were involved in multiple metabolic pathways. In terms of secondary metabolic pathways, we found flavonoid 4-reductase genes of anthocyanin biosynthesis pathway are most significantly affected during pomegranate seed germination, while the flavonol synthase gene was mainly involved in the regulation of isoflavonoid biosynthesis.展开更多
文摘The general phenylpropanoid metabolism generates an enormous array of secondary metabolites based on the few intermediates of the shikimate pathway as the core unit. The resulting hydroxycinnamic acids and esters are am- plified in several cascades by a combination of reductases, oxygenases, and transferases to result in an organ and devel- opmentally specific pattern of metabolites, characteristic for each plant species. During the last decade, methodology driven targeted and non-targeted approaches in several plant species have enabled the identification of the participating enzymes of this complex biosynthetic machinery, and revealed numerous genes, enzymes, and metabolites essential for regulation and compartmentation. Considerable success in structural and computational biology, combined with the an- alytical sensitivity to detect even trace compounds and smallest changes in the metabolite, transcript, or enzyme pattern, has facilitated progress towards a comprehensive view of the plant response to its biotic and abiotic environment. Trans- genic approaches have been used to reveal insights into an apparently redundant gene and enzyme pattern required for functional integrity and plasticity of the various phenylpropanoid biosynthetic pathways. Nevertheless, the function and impact of all members of a gene family remain to be completely established. This review aims to give an update on the various facets of the general phenylpropanoid pathway, which is not only restricted to common lignin or flavonoid biosynthesis, but feeds into a variety of other aromatic metabolites like coumarins, phenolic volatiles, or hydrolyzable tannins.
基金supported by the National Natural Science Foundation of China(32072093,31830067)the China Agriculture Research System of MOF and MARA,the Science and Enterprise Consortium Project of Chongqing(cqnyncw-kqlhtxm)+1 种基金the Innovation and Entrepreneurship Training Program for Undergraduates(S202010635197)the 111 Project(B12006).
文摘Yellow seed trait is a desirable characteristic with potential for increasing seed quality and commercial value in rapeseed,and anthocyanin and proanthocyanidins(PAs)are major seed-coat pigments.Few transcription factors involved in the regulation of anthocyanin and PAs biosynthesis have been characterized in rapeseed.In this study,we identified a transcription factor gene BnbHLH92a(BnaA06T0441000ZS)in rapeseed.Overexpressing BnbHLH92a both in Arabidopsis and in rapeseed reduced levels of anthocyanin and PAs.Correspondingly,the expression profiles of anthocyanin and PA biosynthesis genes(TT3,BAN,TT8,TT18,and TTG1)were shown by quantitative real-time PCR to be inhibited in BnbHLH92a-overexpressing Arabidopsis seeds,indicating that BnbHLH92a represses the anthocyanin and PA biosynthesis pathway in Arabidopsis.BnbHLH92a physically interacts with the BnTTG1 protein and represses the biosynthesis of anthocyanins and PAs in rapeseed.BnbHLH92a also binds directly to the BnTT18 promoter and represses its expression.These results suggest that BnbHLH92a is a novel upstream regulator of flavonoid biosynthesis in B.napus.
基金The work was supported by the National Natural Science Foundation of China,Nos.81470656(to YX),82071372(to AL),82074169(to XSM)Guangdong Grant Key Technologies for Treatment of Brain Disorders’,China,No.2018B030332001(to YX)+3 种基金Ningxia Key Research and Development Program Grant(Yinchuan,Ningxia Hui Autonomous Region,China)(to KFS)Program of Introducing Talents of Discipline to Universities,China,No.B14036(to YX,AL,KFS)Outstanding Scholar Program of Bioland Laboratory(Guangzhou Regenerative Medicine and Health Guangdong Laboratory),No.2018GZR110102002(to KFS,AL)Science and Technology Program of Guangzhou,No.202007030012(to KFS and AL).
文摘Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury,whereby it can inhibit microglial neurotoxicity.Therefore,luteolin holds the potential to be useful for treatment of retinal diseases.The purpose of this study was to investigate whether luteolin exhibits neuroprotective effects on rod cells in rd10 mice,a slow photoreceptor-degenerative model of retinitis pigmentosa.Luteolin(100 mg/kg)intraperitoneally injected daily from postnatal day 14(P14)to P25 significantly enhanced the visual performance and retinal light responses of rd10 mice at P25.Moreover,it increased the survival of photoreceptors and improved retinal structure.Mechanistically,luteolin treatment attenuated increases in reactive oxygen species,photoreceptor apoptosis,and reactive gliosis;increased mRNA levels of anti-inflammatory cytokines while lowering that of pro-inflammatory and chemoattractant cytokines;and lowered the ratio of phospho-JNK/JNK.Application of the JNK inhibitor SP600125 exerted a similar protective effect to luteolin,suggesting that luteolin delays photoreceptor degeneration and functional deterioration in rd10 mice through regulation of retinal oxidation and inflammation by inhibiting the JNK pathway.Therefore,luteolin may be useful as a supplementary treatment for retinitis pigmentosa.This study was approved by the Qualified Ethics Committee of Jinan University,China(approval No.IACUC-20181217-02)on December 17,2018.
基金supported by the Doctorate Fellowship Foundation of Nanjing Forestry University, China (163010550)the Priority Academic Program Development of Jiangsu High Education Institutions, China (PAPD)。
文摘We conducted an integrative system biology of metabolome and transcriptome profile analyses during pomegranate(Punica granatum L.) seed germination and utilized a weighted gene co-expression network analysis(WGCNA) to describe the functionality and complexity of the physiological and morphogenetic processes as well as gene expression and metabolic differences during seed germination stages. In total, 489 metabolites were detected, including 40 differentially accumulated metabolites. The transcriptomic analysis showed the expression of 6 984 genes changed significantly throughout the whole germination process. Using WGCNA, we identified modules related to the various seed germination stages and hub genes. In the initial imbibition stage(stage 1), the pivotal genes involved in RNA transduction and the glycolytic pathway were most active, while in the sprouting stage(stage 4), the pivotal genes were involved in multiple metabolic pathways. In terms of secondary metabolic pathways, we found flavonoid 4-reductase genes of anthocyanin biosynthesis pathway are most significantly affected during pomegranate seed germination, while the flavonol synthase gene was mainly involved in the regulation of isoflavonoid biosynthesis.