Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. ...Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in- situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore, the aerators in the same corridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount 〈 0.67 Nm 3 /hr). However, as the aeration amount reached 0.96 Nm 3 /hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.展开更多
The production of high purity steel is a major task for the iron and steel enterprises in the 21st century. To improve the quality of steel products and produce the cleanness steel, the key technique is to control inc...The production of high purity steel is a major task for the iron and steel enterprises in the 21st century. To improve the quality of steel products and produce the cleanness steel, the key technique is to control inclusions in the molten steel. In the present investigation, a novel fine inclusion removal technology due to the dispersed in-situ phase induced by the composite ball explosion reaction was put forward. A composite ball with this function has been designed and the industrial experimental investigation was also carried out. The results indicate that feeding composite ball in RH ladle is a novel technology and the inclusion in the molten steel can be removed effectively. Compared with conventional inclusion removal technology, the number of the oxide inclusion can be decreased to a lower level and the inclusion size becomes much finer. Using this novel technology, the total oxygen in the as-cast slab can approach to 6ppm and the steel production cost for per ton can be reduced by 5 -12 RMB. This novel technology can be achieved without special facility and be realized in most steelmaking plant.展开更多
基金supported by the Major Water Project of the National Science and Technology (No.2011ZX07319-001-004, 2011ZX07301-002)
文摘Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in- situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore, the aerators in the same corridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount 〈 0.67 Nm 3 /hr). However, as the aeration amount reached 0.96 Nm 3 /hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.
文摘The production of high purity steel is a major task for the iron and steel enterprises in the 21st century. To improve the quality of steel products and produce the cleanness steel, the key technique is to control inclusions in the molten steel. In the present investigation, a novel fine inclusion removal technology due to the dispersed in-situ phase induced by the composite ball explosion reaction was put forward. A composite ball with this function has been designed and the industrial experimental investigation was also carried out. The results indicate that feeding composite ball in RH ladle is a novel technology and the inclusion in the molten steel can be removed effectively. Compared with conventional inclusion removal technology, the number of the oxide inclusion can be decreased to a lower level and the inclusion size becomes much finer. Using this novel technology, the total oxygen in the as-cast slab can approach to 6ppm and the steel production cost for per ton can be reduced by 5 -12 RMB. This novel technology can be achieved without special facility and be realized in most steelmaking plant.