摘要
Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in- situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore, the aerators in the same corridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount 〈 0.67 Nm 3 /hr). However, as the aeration amount reached 0.96 Nm 3 /hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.
Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in- situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore, the aerators in the same corridor shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount 〈 0.67 Nm 3 /hr). However, as the aeration amount reached 0.96 Nm 3 /hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters for the aerators under process conditions.
基金
supported by the Major Water Project of the National Science and Technology (No.2011ZX07319-001-004, 2011ZX07301-002)