An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and pot...An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.展开更多
In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm i...In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.展开更多
In order to improve the autonomous navigation capability of satellite,a pulsar/CNS(celestial navigation system) integrated navigation method based on federated unscented Kalman filter(UKF) is proposed.The celestia...In order to improve the autonomous navigation capability of satellite,a pulsar/CNS(celestial navigation system) integrated navigation method based on federated unscented Kalman filter(UKF) is proposed.The celestial navigation is a mature and stable navigation method.However,its position determination performance is not satisfied due to the low accuracy of horizon sensor.Single pulsar navigation is a new navigation method,which can provide highly accurate range measurements.The major drawback of single pulsar navigation is that the system is completely unobservable.As two methods are complementary to each other,the federated UKF is used here for fusing the navigation data from single pulsar navigation and CNS.Compared to the traditional celestial navigation method and single pulsar navigation,the integrated navigation method can provide better navigation performance.The simulation results demonstrate the feasibility and effectiveness of the navigation method.展开更多
This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following str...This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following strategy and an omni-directional local phase slope estimator.This technique performs simultaneously noise filtering and phase unwrapping along the high-quality region to the low-quality region,which is also able to avoid going directly through the noisy regions.In addition,phase slope is estimated directly from the sample frequency spectrum of the complex interferogram,by which the underestimation of phase slope is overcome.Simulation and real data processing results validate the effectiveness of the proposed method,and show a significant improvement with respect to the extended Kalman filtering(EKF) algorithm and some conventional phase unwrapping algorithms in some situations.展开更多
To solve the divergence problem and overcome the difficulty in guaranteeing filtering accuracy during estimation of the process noise covariance or the measurement noise covariance with traditional new information-bas...To solve the divergence problem and overcome the difficulty in guaranteeing filtering accuracy during estimation of the process noise covariance or the measurement noise covariance with traditional new information-based nonlinear filtering methods,we design a new method for estimating noise statistical characteristics of nonlinear systems based on the credibility Kalman Filter(KF)theory considering noise correlation.This method first extends credibility to the Unscented Kalman Filter(UKF)and Extended Kalman Filter(EKF)based on the credibility theory.Further,an optimization model for nonlinear credibility under noise related conditions is established considering noise correlation.A combination of filtering smoothing and credibility iteration formula is used to improve the real-time performance of the nonlinear adaptive credibility KF algorithm,further expanding its application scenarios,and the derivation process of the formula theory is provided.Finally,the performance of the nonlinear credibility filtering algorithm is simulated and analyzed from multiple perspectives,and a comparative analysis conducted on specific experimental data.The simulation and experimental results show that the proposed credibility EKF and credibility UKF algorithms can estimate the noise covariance more accurately and effectively with lower average estimation time than traditional methods,indicating that the proposed algorithm has stable estimation performance and good real-time performance.展开更多
In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand....For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.展开更多
To handle the problem of target tracking in the presence of standoff jamming(SOJ), a Gaussian sum unscented Kalman filter(GSUKF) and a Gaussian sum particle filter(GSPF) using negative information(scans or dwells with...To handle the problem of target tracking in the presence of standoff jamming(SOJ), a Gaussian sum unscented Kalman filter(GSUKF) and a Gaussian sum particle filter(GSPF) using negative information(scans or dwells with no measurements) are implemented separately in this paper. The Gaussian sum likelihood which is derived from a sensor model accounting for both the positive and the negative information is used. GSUKF is implemented by fusing the state estimate of two or three UKF filters with proper weights which are explicitly derived in this paper. Other than GSUKF, the Gaussian sum likelihood is directly used in the weight update of the GSPF. Their performances are evaluated by comparison with the Gaussian sum extended Kalman filter(GSEKF)implementation. Simulation results show that GSPF outperforms the other filters in terms of track loss and track accuracy at the cost of large computation complexity. GSUKF and GSEKF have comparable performance; the superiority of one over another is scenario dependent.展开更多
An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation syste...An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.展开更多
In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,positio...In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,position and velocity)are limited to particular cases.For general cases,the range measurements can be utilized by developing a state estimation algorithm in range-Doppler(R-D)plane to obtain accurate range and Doppler estimates.In this paper,a state estimation method based on the proper dynamic model in the R-D plane is proposed.The unscented Kalman filter is employed to handle the strong nonlinearity in the dynamic model.Two filtering initialization methods are derived to extract the initial state estimate and the initial covariance in the R-D plane from the first several range measurements.One is derived based on the well-known two-point differencing method.The other incorporates the correct dynamic model information and uses the unscented transformation method to obtain the initial state estimates and covariance,resulting in a model-based method,which capitalizes the model information to yield better performance.Monte Carlo simulation results are provided to illustrate the effectiveness and superior performance of the proposed state estimation and filter initialization methods.展开更多
In the applications of joint control and robot movement,the joint torque estimation has been treated as an effective technique and widely used.Researches are made to analyze the kinematic and compliance model of the r...In the applications of joint control and robot movement,the joint torque estimation has been treated as an effective technique and widely used.Researches are made to analyze the kinematic and compliance model of the robot joint with harmonic drive to acquire high precision torque output.Through analyzing the structures of the harmonic drive and experiment apparatus,a scheme of the proposed joint torque estimation method based on both the dynamic characteristics and unscented Kalman filter(UKF)is designed and built.Based on research and scheme,torque estimation methods in view of only harmonic drive compliance model and compliance model with the Kalman filter are simulated as guidance and reference to promote the research on the torque estimation technique.Finally,a promoted torque estimation method depending on both harmonic drive compliance model and UKF is designed,and simulation results compared with the measurements of a commercial torque sensor,have verified the effectiveness of the proposed method.展开更多
Geomagnetic orbit determination fits for nanosatellites which pursue low cost and high-density ratio,but one of its disadvantages is the poor position accuracy introduced by magnetic bias.Here,a new method,named the f...Geomagnetic orbit determination fits for nanosatellites which pursue low cost and high-density ratio,but one of its disadvantages is the poor position accuracy introduced by magnetic bias.Here,a new method,named the fuzzy regulating unscented Kalman filter(FRUKF),is proposed.The magnetic bias is regarded as a random walk model,and a fuzzy regulator is designed to estimate the magnetic bias more accurately.The input of the regulator is the derivative of magnetic bias estimated from unscented Kalman filter(UKF).According to the fuzzy rule,the process noise covariance is adaptively determined.The FRUKF is evaluated using the real-flight data of the SWARMA.The experimental results show that the root-mean-square(RMS)position error is 3.1 km and the convergence time is shorter than the traditional way.展开更多
Aiming at the problems of low measurement accuracy,uncertainty and nonlinearity of random noise of the micro electro mechanical system(MEMS)gyroscope,a gyroscope noise estimation and filtering method is proposed,which...Aiming at the problems of low measurement accuracy,uncertainty and nonlinearity of random noise of the micro electro mechanical system(MEMS)gyroscope,a gyroscope noise estimation and filtering method is proposed,which combines expectation maximum(EM)with maximum a posterior(MAP)to form an adpative unscented Kalman filter(UKF),called EMMAP-UKF.According to the MAP estimation principle,a suboptimal unbiased MAP noise statistical estimation model is constructed.Then,EM algorithm is introduced to transform the noise estimation problem into the mathematical expectation maximization problem,which can dynamically adjust the variance of the observed noise.Finally,the estimation and filtering of gyroscope random drift error can be realized.The performance of the gyro noise filtering method is evaluated by Allan variance,and the effectiveness of the method is verified by hardware-in-the-loop simulation.展开更多
A new control strategy based on nonlinear unscented Kalman filter(UKF) is proposed for a neural mass model that serves as a model for simulating real epileptiform stereo-electroencephalographic (SEEG) signals. The UKF...A new control strategy based on nonlinear unscented Kalman filter(UKF) is proposed for a neural mass model that serves as a model for simulating real epileptiform stereo-electroencephalographic (SEEG) signals. The UKF is used as an observer to estimate the state from the noisy measurement because it has been proved to be effective for state estimation of nonlinear systems. A UKF controller is constructed via the estimated state and is illustrated to be effective for epileptiform spikes suppression of aforementioned model by numerical simulations.展开更多
In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified...In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified unscented Kalman filter (UKF) is presented. The proposed algorithm uses the Singer mobile statement model as the reference system, and the simplified UKF as the subfilters. The subfilters receive the two groups of independently detected time difference of arrival (TDOA) measurement inputs and Doppler measurement inputs, and produce local estimation outputs to the main estimator. Then the main estimator performs the optimal fusion of the local estimation outputs according to the scalar weighted rule, and a global optimal or suboptimal estimation result is achieved. Finally the main estimator gives feedback and reset information to the subfilters and the reference system for next step estimation. In the simulations, the estimation performance of the proposed algorithm is evaluated and compared with the simplified UKF method with TDOA or Doppler measurement alone. The simulation results demonstrate that the proposed algorithm can effectively reduce the location estimation error and variance of the MS, and has favorable performance in both root mean square error(RMSE) and mean error cumulative distribution function(CDF).展开更多
Ultra-Wide Bandwidth(UWB)localization based on time of arrival(TOA)and angle of arrival(AOA)has attracted increasing interest owing to its high accuracy and low cost.However,existing localization methods often fail to...Ultra-Wide Bandwidth(UWB)localization based on time of arrival(TOA)and angle of arrival(AOA)has attracted increasing interest owing to its high accuracy and low cost.However,existing localization methods often fail to achieve satisfactory accuracy in realistic environments due to multipath effects and non-line-of-sight(NLOS)propagation.In this paper,we propose a passive anchor assisted localization(PAAL)scheme,where the active anchor obtains TOA/AOA measurements to the agent while the passive anchors capture the signals from the active anchor and agent.The proposed method fully exploits the time-difference-of-arrival(TDOA)information from the measurements at the passive anchors to complement single-anchor joint TOA/AOA localization.The performance limits of the PAAL system are derived as a benchmark via the information inequality.Moreover,we implement the PAAL system on a low-cost UWB platform,which can achieve 20 cm localization accuracy in NLOS environments.展开更多
文摘An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.
基金The National Basic Research Program of China (973 Program) (No. 613121010202)
文摘In the traditional unscented Kalman filter(UKF),accuracy and robustness decline when uncertain disturbances exist in the practical system.To deal with the problem,a robust UKF algorithm based on an H-infinity norm is proposed.In Krein space,a robust element is added in the simplified UKF so as to improve the algorithm.The filtering gain is adjusted by the robust element and in this way the performance of the robustness of the filtering algorithm is promoted.In the initial alignment process of the large heading misalignment angle of the strapdown inertial navigation system(SINS),comparative studies are conducted on the robust UKF and the simplified UKF.The simulation results illustrate that compared with the simplified UKF,the robust UKF is more accurate,and the estimation error of heading misalignment decreases from 16.9' to 4.3'.In short,the robust UKF can reduce the sensitivity to the system disturbances resulting in better performance.
基金supported by the National High Technology Research and Development Program of China(2006AAJ109)Aviation Science Fund(20070818001)
文摘In order to improve the autonomous navigation capability of satellite,a pulsar/CNS(celestial navigation system) integrated navigation method based on federated unscented Kalman filter(UKF) is proposed.The celestial navigation is a mature and stable navigation method.However,its position determination performance is not satisfied due to the low accuracy of horizon sensor.Single pulsar navigation is a new navigation method,which can provide highly accurate range measurements.The major drawback of single pulsar navigation is that the system is completely unobservable.As two methods are complementary to each other,the federated UKF is used here for fusing the navigation data from single pulsar navigation and CNS.Compared to the traditional celestial navigation method and single pulsar navigation,the integrated navigation method can provide better navigation performance.The simulation results demonstrate the feasibility and effectiveness of the navigation method.
基金supported by the National Natural Science Foundation of China (60772143)
文摘This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following strategy and an omni-directional local phase slope estimator.This technique performs simultaneously noise filtering and phase unwrapping along the high-quality region to the low-quality region,which is also able to avoid going directly through the noisy regions.In addition,phase slope is estimated directly from the sample frequency spectrum of the complex interferogram,by which the underestimation of phase slope is overcome.Simulation and real data processing results validate the effectiveness of the proposed method,and show a significant improvement with respect to the extended Kalman filtering(EKF) algorithm and some conventional phase unwrapping algorithms in some situations.
基金supported by the National Natural Science Foundation of China(No.62033010)the Qing Lan Project of Jiangsu Province,China(No.R2023Q07)the Aeronautical Science Foundation of China(No.2019460T5001).
文摘To solve the divergence problem and overcome the difficulty in guaranteeing filtering accuracy during estimation of the process noise covariance or the measurement noise covariance with traditional new information-based nonlinear filtering methods,we design a new method for estimating noise statistical characteristics of nonlinear systems based on the credibility Kalman Filter(KF)theory considering noise correlation.This method first extends credibility to the Unscented Kalman Filter(UKF)and Extended Kalman Filter(EKF)based on the credibility theory.Further,an optimization model for nonlinear credibility under noise related conditions is established considering noise correlation.A combination of filtering smoothing and credibility iteration formula is used to improve the real-time performance of the nonlinear adaptive credibility KF algorithm,further expanding its application scenarios,and the derivation process of the formula theory is provided.Finally,the performance of the nonlinear credibility filtering algorithm is simulated and analyzed from multiple perspectives,and a comparative analysis conducted on specific experimental data.The simulation and experimental results show that the proposed credibility EKF and credibility UKF algorithms can estimate the noise covariance more accurately and effectively with lower average estimation time than traditional methods,indicating that the proposed algorithm has stable estimation performance and good real-time performance.
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
基金funded by the project scheme of the Publication Writing-IPR Incentive Program(PPHKI)2022Directorate of Research and Community Service(DRPM)Institut Teknologi Sepuluh Nopember(ITS)Surabaya,Indonesia for the financial supports。
文摘For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.
文摘To handle the problem of target tracking in the presence of standoff jamming(SOJ), a Gaussian sum unscented Kalman filter(GSUKF) and a Gaussian sum particle filter(GSPF) using negative information(scans or dwells with no measurements) are implemented separately in this paper. The Gaussian sum likelihood which is derived from a sensor model accounting for both the positive and the negative information is used. GSUKF is implemented by fusing the state estimate of two or three UKF filters with proper weights which are explicitly derived in this paper. Other than GSUKF, the Gaussian sum likelihood is directly used in the weight update of the GSPF. Their performances are evaluated by comparison with the Gaussian sum extended Kalman filter(GSEKF)implementation. Simulation results show that GSPF outperforms the other filters in terms of track loss and track accuracy at the cost of large computation complexity. GSUKF and GSEKF have comparable performance; the superiority of one over another is scenario dependent.
基金supported by the Aviation Science Foundation(20070852009)
文摘An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.
基金This work was supported by the National Natural Science Foundation of China(61671181,62101162).
文摘In some tracking applications,due to the sensor characteristic,only range measurements are available.If this is the case,due to the lack of full position measurements,the observability of Cartesian states(e.g.,position and velocity)are limited to particular cases.For general cases,the range measurements can be utilized by developing a state estimation algorithm in range-Doppler(R-D)plane to obtain accurate range and Doppler estimates.In this paper,a state estimation method based on the proper dynamic model in the R-D plane is proposed.The unscented Kalman filter is employed to handle the strong nonlinearity in the dynamic model.Two filtering initialization methods are derived to extract the initial state estimate and the initial covariance in the R-D plane from the first several range measurements.One is derived based on the well-known two-point differencing method.The other incorporates the correct dynamic model information and uses the unscented transformation method to obtain the initial state estimates and covariance,resulting in a model-based method,which capitalizes the model information to yield better performance.Monte Carlo simulation results are provided to illustrate the effectiveness and superior performance of the proposed state estimation and filter initialization methods.
基金supported by the National Natural Science Foundation of China(51879055)。
文摘In the applications of joint control and robot movement,the joint torque estimation has been treated as an effective technique and widely used.Researches are made to analyze the kinematic and compliance model of the robot joint with harmonic drive to acquire high precision torque output.Through analyzing the structures of the harmonic drive and experiment apparatus,a scheme of the proposed joint torque estimation method based on both the dynamic characteristics and unscented Kalman filter(UKF)is designed and built.Based on research and scheme,torque estimation methods in view of only harmonic drive compliance model and compliance model with the Kalman filter are simulated as guidance and reference to promote the research on the torque estimation technique.Finally,a promoted torque estimation method depending on both harmonic drive compliance model and UKF is designed,and simulation results compared with the measurements of a commercial torque sensor,have verified the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.61673212).
文摘Geomagnetic orbit determination fits for nanosatellites which pursue low cost and high-density ratio,but one of its disadvantages is the poor position accuracy introduced by magnetic bias.Here,a new method,named the fuzzy regulating unscented Kalman filter(FRUKF),is proposed.The magnetic bias is regarded as a random walk model,and a fuzzy regulator is designed to estimate the magnetic bias more accurately.The input of the regulator is the derivative of magnetic bias estimated from unscented Kalman filter(UKF).According to the fuzzy rule,the process noise covariance is adaptively determined.The FRUKF is evaluated using the real-flight data of the SWARMA.The experimental results show that the root-mean-square(RMS)position error is 3.1 km and the convergence time is shorter than the traditional way.
基金National Natural Science Foundation of China(No.61863024)Scientific Research Projects of Higher Institutions of Gansu Province(No.2018C-11)+1 种基金Natural Science Foundation of Gansu Province(No.18JR3RA107)Science and Technology Program of Gansu Province(No.18CX3ZA004)。
文摘Aiming at the problems of low measurement accuracy,uncertainty and nonlinearity of random noise of the micro electro mechanical system(MEMS)gyroscope,a gyroscope noise estimation and filtering method is proposed,which combines expectation maximum(EM)with maximum a posterior(MAP)to form an adpative unscented Kalman filter(UKF),called EMMAP-UKF.According to the MAP estimation principle,a suboptimal unbiased MAP noise statistical estimation model is constructed.Then,EM algorithm is introduced to transform the noise estimation problem into the mathematical expectation maximization problem,which can dynamically adjust the variance of the observed noise.Finally,the estimation and filtering of gyroscope random drift error can be realized.The performance of the gyro noise filtering method is evaluated by Allan variance,and the effectiveness of the method is verified by hardware-in-the-loop simulation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61004050 and 60125019) and the Natural Science Foundation of Scientific Research of Hebei Education Department, China (Grant No. 2009482).
文摘A new control strategy based on nonlinear unscented Kalman filter(UKF) is proposed for a neural mass model that serves as a model for simulating real epileptiform stereo-electroencephalographic (SEEG) signals. The UKF is used as an observer to estimate the state from the noisy measurement because it has been proved to be effective for state estimation of nonlinear systems. A UKF controller is constructed via the estimated state and is illustrated to be effective for epileptiform spikes suppression of aforementioned model by numerical simulations.
基金The Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China(No.706028)
文摘In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified unscented Kalman filter (UKF) is presented. The proposed algorithm uses the Singer mobile statement model as the reference system, and the simplified UKF as the subfilters. The subfilters receive the two groups of independently detected time difference of arrival (TDOA) measurement inputs and Doppler measurement inputs, and produce local estimation outputs to the main estimator. Then the main estimator performs the optimal fusion of the local estimation outputs according to the scalar weighted rule, and a global optimal or suboptimal estimation result is achieved. Finally the main estimator gives feedback and reset information to the subfilters and the reference system for next step estimation. In the simulations, the estimation performance of the proposed algorithm is evaluated and compared with the simplified UKF method with TDOA or Doppler measurement alone. The simulation results demonstrate that the proposed algorithm can effectively reduce the location estimation error and variance of the MS, and has favorable performance in both root mean square error(RMSE) and mean error cumulative distribution function(CDF).
文摘Ultra-Wide Bandwidth(UWB)localization based on time of arrival(TOA)and angle of arrival(AOA)has attracted increasing interest owing to its high accuracy and low cost.However,existing localization methods often fail to achieve satisfactory accuracy in realistic environments due to multipath effects and non-line-of-sight(NLOS)propagation.In this paper,we propose a passive anchor assisted localization(PAAL)scheme,where the active anchor obtains TOA/AOA measurements to the agent while the passive anchors capture the signals from the active anchor and agent.The proposed method fully exploits the time-difference-of-arrival(TDOA)information from the measurements at the passive anchors to complement single-anchor joint TOA/AOA localization.The performance limits of the PAAL system are derived as a benchmark via the information inequality.Moreover,we implement the PAAL system on a low-cost UWB platform,which can achieve 20 cm localization accuracy in NLOS environments.