期刊文献+

Phase noise filtering and phase unwrapping method based on unscented Kalman filter 被引量:6

Phase noise filtering and phase unwrapping method based on unscented Kalman filter
下载PDF
导出
摘要 This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following strategy and an omni-directional local phase slope estimator.This technique performs simultaneously noise filtering and phase unwrapping along the high-quality region to the low-quality region,which is also able to avoid going directly through the noisy regions.In addition,phase slope is estimated directly from the sample frequency spectrum of the complex interferogram,by which the underestimation of phase slope is overcome.Simulation and real data processing results validate the effectiveness of the proposed method,and show a significant improvement with respect to the extended Kalman filtering(EKF) algorithm and some conventional phase unwrapping algorithms in some situations. This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following strategy and an omni-directional local phase slope estimator.This technique performs simultaneously noise filtering and phase unwrapping along the high-quality region to the low-quality region,which is also able to avoid going directly through the noisy regions.In addition,phase slope is estimated directly from the sample frequency spectrum of the complex interferogram,by which the underestimation of phase slope is overcome.Simulation and real data processing results validate the effectiveness of the proposed method,and show a significant improvement with respect to the extended Kalman filtering(EKF) algorithm and some conventional phase unwrapping algorithms in some situations.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期365-372,共8页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China (60772143)
关键词 phase unwrapping unscented Kalman filter(UKF) path-following strategy. phase unwrapping unscented Kalman filter(UKF) path-following strategy.
  • 相关文献

参考文献15

  • 1R. M. Goldstein, H. A. Zerber, C. L. Werner. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Science, 1988, 23 (4): 713-720. 被引量:1
  • 2W. Xu, I. Cumming. A region-growing algorithm for InSAR phase unwrapping. IEEE Trans. on Geoscience and Remote Sensing, 1999, 37 (1): 124-133. 被引量:1
  • 3T. J. Flynn. Two dimensional phase unwrapping with mini- mum weighted discontinuity. Journal of the Optical Society of America, 1997, 14(10): 2692-2701. 被引量:1
  • 4G. Fornaro, G. Franceshetti, R. Lanari. Interferometric SAR phase unwrapping using Greens formulation. IEEE Trans. on Geoscience and Remote Sensing, 1996, 34(3): 720-727. 被引量:1
  • 5M. D. Pritt, J. S. Shipman. l.~east-squares two-dimensional phase unwrapping using FFTs. 1EEE Trans. on Geoscience and Remote Sensing,1994, 32 (3): 706-708. 被引量:1
  • 6R. Bamler, N. Adam, G. W. Davidson, et al. Noise-induced slope distortion in 2-D phase unwrapping by linear estimators with application to SAR interferometry. IEEE Trans. on Geo- science and Remote Sensing, 1998, 36 (3): 913-921. 被引量:1
  • 7M. G. Kim, H. D. Griffiths. Phase unwrapping of multi- baseline interferometry using Kalman filtering. Proc. of the 7th International Conference on Image Processing and its Ap- plications, 1999: 813-817. 被引量:1
  • 8B. Osmanoglu, S. Wdowinski, T. H. Dixon, et al. InSAR phase unwrapping based on extended Kalman filtering. 1EEE Trans. on Geoscience and Remote Sensing, 2009, 47 (4): 1197-1202. 被引量:1
  • 9H. Nies, O. Loffeld, R. Wang. Phase unwrapping using 2D- Kalman filter potential and limitations. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2008: 1213-1216. 被引量:1
  • 10O. Loffeld, H. Nies, S. knedlik, et al. Phase unwrapping for SAR interferometry: a data fusion approach by Kalman filtering. IEEE Trans. on Geoscience and Remote Sensing, 2008, 46(1): 47-58. 被引量:1

同被引文献32

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部