We conducted rapid inversions of rupture process for the 2023 earthquake doublet occurred in SE Türkiye,the first with a magnitude of M_(W)7.8 and the second with a magnitude of M_(W)7.6,using teleseismic and str...We conducted rapid inversions of rupture process for the 2023 earthquake doublet occurred in SE Türkiye,the first with a magnitude of M_(W)7.8 and the second with a magnitude of M_(W)7.6,using teleseismic and strong-motion data.The teleseismic rupture models of the both events were obtained approximately 88 and 55 minutes after their occurrences,respectively.The rupture models indicated that the first event was an asymmetric bilateral event with ruptures mainly propagating to the northeast,while the second one was a unilateral event with ruptures propagating to the west.This information could be useful in locating the meizoseismal areas.Compared with teleseismic models,the strong-motion models showed relatively higher resolution.A noticeable difference was found for the M_(W)7.6 earthquake,for which the strong-motion models shows a bilateral event,rather than a unilateral event,but the dominant rupture direction is still westward.Nevertheless,all strong-motion models are consistent with the teleseismic models in terms of magnitudes,durations,and dominant rupture directions.This suggests that both teleseismic and strong-motion data can be used for fast determination of major source characteristics.In contrast,the strong-motion data would be preferable in future emergency responses since they are recorded earlier and have a better resolution ability on the source ruptures.展开更多
Motion estimation is an important and intensive task in video coding applications. Since the complexity of integer pixel search has been greatly reduced by the numerous fast ME algorithm, the computation overhead requ...Motion estimation is an important and intensive task in video coding applications. Since the complexity of integer pixel search has been greatly reduced by the numerous fast ME algorithm, the computation overhead required by fractional pixel ME has become relatively significant. To reduce the complexity of the fractional pixel ME algorithm, a directionality-based fractional pixel ME algorithm is proposed. The proposed algorithm efficiently explores the neighborhood positions which with high probability to be the best matching around the minimum one and skips over other unlikely ones. Thus, the proposed algorithm can complete the search by examining only 3 points on appropriate condition instead of 17 search points in the search algorithm of reference software. The simulation results show that the proposed algorithm successfully optimizes the fractional-pixel motion search on both half and quarter-pixel accuracy and improves the processing speed with low PSNR penalty.展开更多
The continuous collision of the Eurasian plate and the Indian plate has resulted in several earthquakes in the Himalayan region.The 6.9 Mw 2011 Sikkim earthquake,which caused immense damage to the built environment in...The continuous collision of the Eurasian plate and the Indian plate has resulted in several earthquakes in the Himalayan region.The 6.9 Mw 2011 Sikkim earthquake,which caused immense damage to the built environment in Sikkim,was triggered by an intraplate source on the overriding Eurasian plate.Strong ground motions from the earthquake were recorded at stations established by IIT Roorkee as part of the PESMOS program.In this paper,near-field and far-field ground motions from this earthquake were analyzed to evaluate their key characteristics and examine their time-frequency features by employing Fast Fourier Transforms(FFTs)and Continuous Wavelet Transforms(CWTs).A comparison between the ground motion parameters of near-field and far-field seismic waves highlights the distinct characteristics of near-field ground motions.Additionally,the impact of near-field and far-field ground motions on the seismic response of a code-compliant RC building is investigated.The results from the non-linear time history analyses indicate that the roof displacements,drift ratio and strain induced in the frame elements are less than the code-prescribed maximum limits.Further,the demand and capacity levels for the RC frame elements were evaluated to compute the performance ratios.The results indicate that the extensive damage to reinforced concrete buildings in the 2011 Sikkim quake was primarily due to the nonengineered nature of the structures and also due to the non-compliance of the built structures to the seismic design code provisions.展开更多
We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of p...We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.展开更多
Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors wit...Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part.To address these issues,the Linear Matrix Inequalities(LMIs)and Parallel Distributed Compensation(PDC)approaches are implemented in the Takagy–Sugeno Fuzzy Model(T-SFM).We propose the following methodology;initially,the state space equations of the nonlinear manipulator model are derived.Next,a Takagy–Sugeno Fuzzy Model(T-SFM)technique is used for linearizing the state space equations of the nonlinear manipulator.The T-SFM controller is developed using the Parallel Distributed Compensation(PDC)method.The prime concept of the designed controller is to compensate for all the fuzzy rules.Furthermore,the Linear Matrix Inequalities(LMIs)are applied to generate adequate cases to ensure stability and control.Convex programming methods are applied to solve the developed LMIs problems.Simulations developed for the proposed model show that the proposed controller stabilized the system with zero tracking error in less than 1.5 s.展开更多
The paper relates to a motion planning algorithm for the feed support system of the Five-hundred-meter Aperture Spherical radio Telescope(FAST).To enhance the stability of the feed support system,the start/termination...The paper relates to a motion planning algorithm for the feed support system of the Five-hundred-meter Aperture Spherical radio Telescope(FAST).To enhance the stability of the feed support system,the start/termination planning segments are adopted with an acceleration and deceleration section.The source switching planning adopts a combination of a line segment and focal segment to realize stable control of the feed support system.Besides,during the observation trajectory,a transition segment which is not used for observation data is planned with a required time.Through an example simulation,a smooth change is realized via the motion planning algorithm and presented in this paper.展开更多
基金supported by the National Key Research and Development Program of China(2022YFF0800603).
文摘We conducted rapid inversions of rupture process for the 2023 earthquake doublet occurred in SE Türkiye,the first with a magnitude of M_(W)7.8 and the second with a magnitude of M_(W)7.6,using teleseismic and strong-motion data.The teleseismic rupture models of the both events were obtained approximately 88 and 55 minutes after their occurrences,respectively.The rupture models indicated that the first event was an asymmetric bilateral event with ruptures mainly propagating to the northeast,while the second one was a unilateral event with ruptures propagating to the west.This information could be useful in locating the meizoseismal areas.Compared with teleseismic models,the strong-motion models showed relatively higher resolution.A noticeable difference was found for the M_(W)7.6 earthquake,for which the strong-motion models shows a bilateral event,rather than a unilateral event,but the dominant rupture direction is still westward.Nevertheless,all strong-motion models are consistent with the teleseismic models in terms of magnitudes,durations,and dominant rupture directions.This suggests that both teleseismic and strong-motion data can be used for fast determination of major source characteristics.In contrast,the strong-motion data would be preferable in future emergency responses since they are recorded earlier and have a better resolution ability on the source ruptures.
文摘Motion estimation is an important and intensive task in video coding applications. Since the complexity of integer pixel search has been greatly reduced by the numerous fast ME algorithm, the computation overhead required by fractional pixel ME has become relatively significant. To reduce the complexity of the fractional pixel ME algorithm, a directionality-based fractional pixel ME algorithm is proposed. The proposed algorithm efficiently explores the neighborhood positions which with high probability to be the best matching around the minimum one and skips over other unlikely ones. Thus, the proposed algorithm can complete the search by examining only 3 points on appropriate condition instead of 17 search points in the search algorithm of reference software. The simulation results show that the proposed algorithm successfully optimizes the fractional-pixel motion search on both half and quarter-pixel accuracy and improves the processing speed with low PSNR penalty.
文摘The continuous collision of the Eurasian plate and the Indian plate has resulted in several earthquakes in the Himalayan region.The 6.9 Mw 2011 Sikkim earthquake,which caused immense damage to the built environment in Sikkim,was triggered by an intraplate source on the overriding Eurasian plate.Strong ground motions from the earthquake were recorded at stations established by IIT Roorkee as part of the PESMOS program.In this paper,near-field and far-field ground motions from this earthquake were analyzed to evaluate their key characteristics and examine their time-frequency features by employing Fast Fourier Transforms(FFTs)and Continuous Wavelet Transforms(CWTs).A comparison between the ground motion parameters of near-field and far-field seismic waves highlights the distinct characteristics of near-field ground motions.Additionally,the impact of near-field and far-field ground motions on the seismic response of a code-compliant RC building is investigated.The results from the non-linear time history analyses indicate that the roof displacements,drift ratio and strain induced in the frame elements are less than the code-prescribed maximum limits.Further,the demand and capacity levels for the RC frame elements were evaluated to compute the performance ratios.The results indicate that the extensive damage to reinforced concrete buildings in the 2011 Sikkim quake was primarily due to the nonengineered nature of the structures and also due to the non-compliance of the built structures to the seismic design code provisions.
基金Project supported by the National Natural Science Foundation of China(No.10571159)the Ph.D.Programs Foundation of Ministry of Education of China(No.20060335032)and the Foundation of Hangzhou Dianzi University(No.KYS091506042)
文摘We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.
文摘Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part.To address these issues,the Linear Matrix Inequalities(LMIs)and Parallel Distributed Compensation(PDC)approaches are implemented in the Takagy–Sugeno Fuzzy Model(T-SFM).We propose the following methodology;initially,the state space equations of the nonlinear manipulator model are derived.Next,a Takagy–Sugeno Fuzzy Model(T-SFM)technique is used for linearizing the state space equations of the nonlinear manipulator.The T-SFM controller is developed using the Parallel Distributed Compensation(PDC)method.The prime concept of the designed controller is to compensate for all the fuzzy rules.Furthermore,the Linear Matrix Inequalities(LMIs)are applied to generate adequate cases to ensure stability and control.Convex programming methods are applied to solve the developed LMIs problems.Simulations developed for the proposed model show that the proposed controller stabilized the system with zero tracking error in less than 1.5 s.
基金funded by the National Natural Science Foundation of China(Grant Nos.11203048 and 11973062)the Youth Innovation Promotion Association CAS+1 种基金the Open Project Program of the Key Laboratory of FASTNational Astronomical Observatories,Chinese Academy of Sciences
文摘The paper relates to a motion planning algorithm for the feed support system of the Five-hundred-meter Aperture Spherical radio Telescope(FAST).To enhance the stability of the feed support system,the start/termination planning segments are adopted with an acceleration and deceleration section.The source switching planning adopts a combination of a line segment and focal segment to realize stable control of the feed support system.Besides,during the observation trajectory,a transition segment which is not used for observation data is planned with a required time.Through an example simulation,a smooth change is realized via the motion planning algorithm and presented in this paper.