期刊文献+

Maximal speed of particles in super-Lévy process

Maximal speed of particles in super-Lévy process
下载PDF
导出
摘要 We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process. We introduce a super-Lévy process and study maximal speed of all particles in the range and the support of the super-Lévy process. The state of historical super-Lévy process is a measure on the set of paths. We study the maximal speed of all particles during a given time period, which turns out to be a function of the packing dimension of the time period. We calculate the Hausdorff dimension of the set of a-fast paths in the support and the range of the historical super-Lévy process.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第4期517-525,共9页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.10571159) the Ph.D.Programs Foundation of Ministry of Education of China(No.20060335032) and the Foundation of Hangzhou Dianzi University(No.KYS091506042)
关键词 super-Lévy process modulus of continuity Hausdorff dimension Lévy process a-fast path Brownian motion super-Lévy process, modulus of continuity, Hausdorff dimension, Lévy process, a-fast path, Brownian motion
  • 相关文献

参考文献12

  • 1Peter M?rters.How fast are the particles of super-Brownian motion?[J].Probability Theory and Related Fields.2001(2) 被引量:1
  • 2Laurent Serlet.Some dimension results for super-Brownian motion[J].Probability Theory and Related Fields.1995(3) 被引量:1
  • 3Dawson D A,Perkins E A.Historical processes[].Memoirs of the American Mathematical Society.1991 被引量:1
  • 4Verzani J.The slow points in the support of historical super-Brownian motion]J][].The Annals of Probability.1995 被引量:1
  • 5Cox T,Durrett R,Perkins E A.Rescaled particale systems converging to super-Brownian mo- tion[].Perplexing problems in probability.1999 被引量:1
  • 6Le Gall J F.Spatial branching processes,random snakes and partial differential equations[]..1999 被引量:1
  • 7Revuz D,,Yor M.Continuous martingales and Brownian motion[]..1991 被引量:1
  • 8Serlet L.Some dimension results for super-Brownian motion[].Probability Theory and Related Fields.1995 被引量:1
  • 9Slade G.Lattice trees,percolation and super-Brownian motion[].Perplexing problems in probability.1996 被引量:1
  • 10MSrters P.How fast are the particles of super-Brownian motion[].Probability Theory and Related Fields.2001 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部