For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
In Gao’s previous work, the authors determined several degree conditions of a graph which admits fractional factor in particular settings. It was revealed that these degree conditions are tight if b = f(x) = g(x) = a...In Gao’s previous work, the authors determined several degree conditions of a graph which admits fractional factor in particular settings. It was revealed that these degree conditions are tight if b = f(x) = g(x) = a for all vertices x in G. In this paper, we continue to discuss these degree conditions for admitting fractional factor in the setting that several vertices and edges are removed and there is a difference Δ between g(x) and f(x) for every vertex x in G. These obtained new degree conditions reformulate Gao’s previous conclusions, and show how Δ acts in the results. Furthermore,counterexamples are structured to reveal the sharpness of degree conditions in the setting f(x) =g(x) + Δ.展开更多
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
基金Supported by NSFC(Grant Nos.11761083,11771402 and 11671053)Fundacion Seneca(Spain)(Grant No.20783/PI/18)Ministry of Science,Innovation and Universities(Spain)(Grant No.PGC2018-097198-B-100)。
文摘In Gao’s previous work, the authors determined several degree conditions of a graph which admits fractional factor in particular settings. It was revealed that these degree conditions are tight if b = f(x) = g(x) = a for all vertices x in G. In this paper, we continue to discuss these degree conditions for admitting fractional factor in the setting that several vertices and edges are removed and there is a difference Δ between g(x) and f(x) for every vertex x in G. These obtained new degree conditions reformulate Gao’s previous conclusions, and show how Δ acts in the results. Furthermore,counterexamples are structured to reveal the sharpness of degree conditions in the setting f(x) =g(x) + Δ.