This work characterizes microstructural evolutions of electron beam melted(EBM) Ti-6 Al-4 V alloy modified via laser shock peening(LSP).The depth stress distribution and tensile properties of EBM Ti-6 Al-4 V alloy wer...This work characterizes microstructural evolutions of electron beam melted(EBM) Ti-6 Al-4 V alloy modified via laser shock peening(LSP).The depth stress distribution and tensile properties of EBM Ti-6 Al-4 V alloy were measured before and after LSP.The results indicate that microstructure consists of β phase with 7.2%±0.4% vol.% and balance α lamellar in EBM sample,and the α lamella was refined into nano-equiaxed grains and submicro-equiaxed grains after LSP.The dominant refinement mechanism is revealed during LSP.Stacking faults were found in the LSP-treated sample,and their corresponding planes were determined as(0001) basal plane,(1010) prismatic plane,and(1011) pyramidal plane obtained by high resolution transmission electron microscopy.The subgrains and high-angle grains formed during dynamic recrystallization were identified by selected area electron diffraction pattern.The LSP treatment produces a significantly residual compressive stress approximately-380 MPa with the depth of compressive stress layer reaching 450 μm.Strength and elongation of the EBM sample were significantly increased after LSP.The strength and ductility enhancements are attributed to compre s sive stress,grain refinement and grain gradient distribution of α phase.展开更多
针对装备精确维修需求,应用平行仿真技术,提出一种装备精确维修的平行仿真系统(parallel simulation system of equipment precision maintenance,PSSEPM)架构。首先建立与装备对应的仿真系统,此时的仿真模型并不精确,仿真系统与装备同...针对装备精确维修需求,应用平行仿真技术,提出一种装备精确维修的平行仿真系统(parallel simulation system of equipment precision maintenance,PSSEPM)架构。首先建立与装备对应的仿真系统,此时的仿真模型并不精确,仿真系统与装备同时运行后,通过装备实时状态信息的"喂养",利用演化算法,使得在一定误差范围内仿真系统的输出与实际装备真实状态相一致,达到平行状态,进而基于已演化完毕的仿真系统利用快速仿真方法预测装备未来的健康状态和故障状态,为精确维修决策提供数据支持,最后介绍了PSSEPM涉及的关键技术。展开更多
In quantum optics, unitary transformations of arbitrary states are evaluated by using the Taylor series expansion. However, this traditional approach can become cumbersome for the transformations involving non-commuti...In quantum optics, unitary transformations of arbitrary states are evaluated by using the Taylor series expansion. However, this traditional approach can become cumbersome for the transformations involving non-commuting operators. Addressing this issue, a nonstandard unitary transformation technique is highlighted here with new perspective. In a spirit of “quantum” series expansions, the transition probabilities between initial and final states, such as displaced, squeezed and other nonlinearly transformed coherent states are obtained both numerically and analytically. This paper concludes that, although this technique is novel, its implementations for more extended systems are needed.展开更多
Semisolid rheoforming (SSR) is a promising technology for the production of Mg wrought alloy in foundry settings. In order to realize SSR, it is necessary to characterize the grain structure evolution during slurry ...Semisolid rheoforming (SSR) is a promising technology for the production of Mg wrought alloy in foundry settings. In order to realize SSR, it is necessary to characterize the grain structure evolution during slurry preparation. In this paper, slurry of AZ31 alloy was produced by a novel rheocast process known as self-inoculation method (SIM). Interrupted quenching technology was applied to investigate the primary a-Mg evolution during continuous cooling and isothermal holding. Results indicate that the initial microstructure of slurry produced by SIM is a mixture of irregular grains, which becomes ideally globular when the slurry slowly cools to 620 ~C and isothermally held for at least 30 s. The local solute diffusion leads to dendritic fragmentation and forms separated particles. During prolonged holding, the particle surface gradually becomes smooth because of protuberance melting and groove advancement. Coarsening of a-Mg grains in isothermal holding was analyzed using Lifshitz-Slyozov-Wagner theory. Results suggest that coalescence is most likely the dominant coarsening mechanism in the early stage while Ostwald ripening tends to be the principal one later. The EDS results indicate that a longer holding time leads to AI solute element segregation at the grain boundaries, but Zn distribution within liquid matrix has no obvious change.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
基金supported financially by the Shanghai Science and Technology Committee Innovation Grant (Nos. 17JC1400600 and 17JC1400603)Distinguished Professor Program of Shanghai University of Engineering Science。
文摘This work characterizes microstructural evolutions of electron beam melted(EBM) Ti-6 Al-4 V alloy modified via laser shock peening(LSP).The depth stress distribution and tensile properties of EBM Ti-6 Al-4 V alloy were measured before and after LSP.The results indicate that microstructure consists of β phase with 7.2%±0.4% vol.% and balance α lamellar in EBM sample,and the α lamella was refined into nano-equiaxed grains and submicro-equiaxed grains after LSP.The dominant refinement mechanism is revealed during LSP.Stacking faults were found in the LSP-treated sample,and their corresponding planes were determined as(0001) basal plane,(1010) prismatic plane,and(1011) pyramidal plane obtained by high resolution transmission electron microscopy.The subgrains and high-angle grains formed during dynamic recrystallization were identified by selected area electron diffraction pattern.The LSP treatment produces a significantly residual compressive stress approximately-380 MPa with the depth of compressive stress layer reaching 450 μm.Strength and elongation of the EBM sample were significantly increased after LSP.The strength and ductility enhancements are attributed to compre s sive stress,grain refinement and grain gradient distribution of α phase.
文摘针对装备精确维修需求,应用平行仿真技术,提出一种装备精确维修的平行仿真系统(parallel simulation system of equipment precision maintenance,PSSEPM)架构。首先建立与装备对应的仿真系统,此时的仿真模型并不精确,仿真系统与装备同时运行后,通过装备实时状态信息的"喂养",利用演化算法,使得在一定误差范围内仿真系统的输出与实际装备真实状态相一致,达到平行状态,进而基于已演化完毕的仿真系统利用快速仿真方法预测装备未来的健康状态和故障状态,为精确维修决策提供数据支持,最后介绍了PSSEPM涉及的关键技术。
文摘In quantum optics, unitary transformations of arbitrary states are evaluated by using the Taylor series expansion. However, this traditional approach can become cumbersome for the transformations involving non-commuting operators. Addressing this issue, a nonstandard unitary transformation technique is highlighted here with new perspective. In a spirit of “quantum” series expansions, the transition probabilities between initial and final states, such as displaced, squeezed and other nonlinearly transformed coherent states are obtained both numerically and analytically. This paper concludes that, although this technique is novel, its implementations for more extended systems are needed.
基金supported by the National Natural Science Foundation of China(50964010)
文摘Semisolid rheoforming (SSR) is a promising technology for the production of Mg wrought alloy in foundry settings. In order to realize SSR, it is necessary to characterize the grain structure evolution during slurry preparation. In this paper, slurry of AZ31 alloy was produced by a novel rheocast process known as self-inoculation method (SIM). Interrupted quenching technology was applied to investigate the primary a-Mg evolution during continuous cooling and isothermal holding. Results indicate that the initial microstructure of slurry produced by SIM is a mixture of irregular grains, which becomes ideally globular when the slurry slowly cools to 620 ~C and isothermally held for at least 30 s. The local solute diffusion leads to dendritic fragmentation and forms separated particles. During prolonged holding, the particle surface gradually becomes smooth because of protuberance melting and groove advancement. Coarsening of a-Mg grains in isothermal holding was analyzed using Lifshitz-Slyozov-Wagner theory. Results suggest that coalescence is most likely the dominant coarsening mechanism in the early stage while Ostwald ripening tends to be the principal one later. The EDS results indicate that a longer holding time leads to AI solute element segregation at the grain boundaries, but Zn distribution within liquid matrix has no obvious change.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.