With comparative genomics approaches, we evaluated the evolutionary characteristics of conservation of exons which are expressed abundantly, moderately or lowly in mammals. Using non-coding regions and pseudogenes as ...With comparative genomics approaches, we evaluated the evolutionary characteristics of conservation of exons which are expressed abundantly, moderately or lowly in mammals. Using non-coding regions and pseudogenes as controls, sequence identity, phastCons and Ka/Ks analyses were carried out and our results showed that as the exons of high abundance are highly conserved, the minor and low exons also showed conservative characteristics in evolution. Our findings suggested that the exons with less abundance which constitute a large proportion of distinct species in transcriptome of organisms are under functional constraint and might play certain roles in enriching biological complexity in the evolution of organisms.展开更多
Device-to-device(D2D)communication is considered as a major challenge in the long term evolution(LTE)network wherein devices directly communicate with each other.One of the key challenges in D2D sidelink is reliable a...Device-to-device(D2D)communication is considered as a major challenge in the long term evolution(LTE)network wherein devices directly communicate with each other.One of the key challenges in D2D sidelink is reliable and reduced-complexity synchronization.To address this issue,a computationally efficient sequential detection scheme for integer carrier frequency offset and sidelink identity is proposed in the LTE-D2D system.To perform the frequency offset detection without retrieving the sidelink identity,the conjugate relation between two primary sidelink synchronization sequences is exploited,which facilitates the detection tasks of frequency offset and sidelink identity to be decoupled.It is demonstrated from simulation results that the inherent property of the sidelink synchronization sequences is effectively used for joint detection of frequency offset and sidelink identity with significantly reduced complexity,compared to existing estimation schemes.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 30871342, J073652, 30660076 and 30740420553)Western Light Program and Yunnan Province Young Scientist Project (Grant No. 2008PY025)Undergraduate Science Novelty Training Project by Yunnan University Life Science Laboratory Center
文摘With comparative genomics approaches, we evaluated the evolutionary characteristics of conservation of exons which are expressed abundantly, moderately or lowly in mammals. Using non-coding regions and pseudogenes as controls, sequence identity, phastCons and Ka/Ks analyses were carried out and our results showed that as the exons of high abundance are highly conserved, the minor and low exons also showed conservative characteristics in evolution. Our findings suggested that the exons with less abundance which constitute a large proportion of distinct species in transcriptome of organisms are under functional constraint and might play certain roles in enriching biological complexity in the evolution of organisms.
基金This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2018R1D1A1B07048819).
文摘Device-to-device(D2D)communication is considered as a major challenge in the long term evolution(LTE)network wherein devices directly communicate with each other.One of the key challenges in D2D sidelink is reliable and reduced-complexity synchronization.To address this issue,a computationally efficient sequential detection scheme for integer carrier frequency offset and sidelink identity is proposed in the LTE-D2D system.To perform the frequency offset detection without retrieving the sidelink identity,the conjugate relation between two primary sidelink synchronization sequences is exploited,which facilitates the detection tasks of frequency offset and sidelink identity to be decoupled.It is demonstrated from simulation results that the inherent property of the sidelink synchronization sequences is effectively used for joint detection of frequency offset and sidelink identity with significantly reduced complexity,compared to existing estimation schemes.