An evacuation plan helps people move away from an area or a building. To assist rapid evacuation,we present an algorithm to compute the optimal route for each local region. The idea is to reduce congestion and maximiz...An evacuation plan helps people move away from an area or a building. To assist rapid evacuation,we present an algorithm to compute the optimal route for each local region. The idea is to reduce congestion and maximize the number of evacuees arriving at exits in each time span. Our system considers crowd distribution, exit locations, and corridor widths when determining optimal routes. It also simulates crowd movements during route optimization. As a basis,we expect that neighboring crowds who take different evacuation routes should arrive at respective exits at nearly the same time. If this is not the case, our system updates the routes of the slower crowds. As crowd simulation is non-linear, the optimal route is computed in an iterative manner. The system repeats until an optimal state is achieved. In addition to directly computing optimal routes for a situation, our system allows the structure of the situation to be decomposed,and determines the routes in a hierarchical manner.This strategy not only reduces the computational cost but also enables crowds in different regions to evacuate with different priorities. Experimental results,with visualizations, demonstrate the feasibility of our evacuation route optimization method.展开更多
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi...Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.展开更多
基金supported in part by “the Ministry of Science and Technology of Taiwan” under Grant MOST 102-2221-E-009-083MY3, Grant MOST 103-2221-E-009-122-MY3, and Grant MOST 104-2221-E-009-051-MY3
文摘An evacuation plan helps people move away from an area or a building. To assist rapid evacuation,we present an algorithm to compute the optimal route for each local region. The idea is to reduce congestion and maximize the number of evacuees arriving at exits in each time span. Our system considers crowd distribution, exit locations, and corridor widths when determining optimal routes. It also simulates crowd movements during route optimization. As a basis,we expect that neighboring crowds who take different evacuation routes should arrive at respective exits at nearly the same time. If this is not the case, our system updates the routes of the slower crowds. As crowd simulation is non-linear, the optimal route is computed in an iterative manner. The system repeats until an optimal state is achieved. In addition to directly computing optimal routes for a situation, our system allows the structure of the situation to be decomposed,and determines the routes in a hierarchical manner.This strategy not only reduces the computational cost but also enables crowds in different regions to evacuate with different priorities. Experimental results,with visualizations, demonstrate the feasibility of our evacuation route optimization method.
基金supported by National Natural Science Foundation of China(71904006)Henan Province Key R&D Special Project(231111322200)+1 种基金the Science and Technology Research Plan of Henan Province(232102320043,232102320232,232102320046)the Natural Science Foundation of Henan(232300420317,232300420314).
文摘Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.