Liver fibrosis is a reversible wound-healing process aimed at maintaining organ integrity, and presents as the critical pre-stage of liver cirrhosis, which will eventually progress to hepatocellular carcinoma in the a...Liver fibrosis is a reversible wound-healing process aimed at maintaining organ integrity, and presents as the critical pre-stage of liver cirrhosis, which will eventually progress to hepatocellular carcinoma in the absence of liver transplantation. Fibrosis generally results from chronic hepatic injury caused by various factors, mainly viral infection, schistosomiasis, and alcoholism; however, the exact pathological mechanisms are still unknown. Although numerous drugs have been shown to have antifibrotic activity in vitro and in animal models, none of these drugs have been shown to be efficacious in the clinic. Importantly, hepatic stellate cells(HSCs) play a key role in the initiation, progression, and regression of liver fibrosis by secreting fibrogenic factors that encourage portal fibrocytes, fibroblasts, and bone marrow-derived myofibroblasts to produce collagen and thereby propagate fibrosis. These cells are subject to intricate cross-talk with adjacent cells, resulting in scarring and subsequent liver damage. Thus, an understanding of the molecular mechanisms of liver fibrosis and their relationships with HSCs is essential for the discovery of new therapeutic targets. This comprehensive review outlines the role of HSCs in liver fibrosis and details novel strategies to suppress HSC activity, thereby providing new insights into potential treatments for liver fibrosis.展开更多
Background:Human infections with zoonotic coronaviruses(CoVs),including severe acute respiratory syndrome(SARS)-CoV and Middle East respiratory syndrome(MERS)-CoV,have raised great public health concern globally.Here,...Background:Human infections with zoonotic coronaviruses(CoVs),including severe acute respiratory syndrome(SARS)-CoV and Middle East respiratory syndrome(MERS)-CoV,have raised great public health concern globally.Here,we report a novel batorigin CoV causing severe and fatal pneumonia in humans.Methods:We collected clinical data and bronchoalveolar lavage(BAL)specimens from five patients with severe pneumonia from Wuhan Jinyintan Hospital,Hubei province,China.Nucleic acids of the BAL were extracted and subjected to next-generation sequencing.Virus isolation was carried out,and maximum-likelihood phylogenetic trees were constructed.Results:Five patients hospitalized from December 18 to December 29,2019 presented with fever,cough,and dyspnea accompanied by complications of acute respiratory distress syndrome.Chest radiography revealed diffuse opacities and consolidation.One of these patients died.Sequence results revealed the presence of a previously unknownβ-CoV strain in all five patients,with 99.8%to 99.9%nucleotide identities among the isolates.These isolates showed 79.0%nucleotide identity with the sequence of SARS-CoV(GenBank NC_004718)and 51.8%identity with the sequence of MERS-CoV(GenBank NC_019843).The virus is phylogenetically closest to a bat SARS-like CoV(SL-ZC45,GenBank MG772933)with 87.6%to 87.7%nucleotide identity,but is in a separate clade.Moreover,these viruses have a single intact open reading frame gene 8,as a further indicator of bat-origin CoVs.However,the amino acid sequence of the tentative receptor-binding domain resembles that of SARS-CoV,indicating that these viruses might use the same receptor.Conclusion:A novel bat-borne CoV was identified that is associated with severe and fatal respiratory disease in humans.展开更多
基金Supported by the National Natural Science Foundation of China,No.81300251
文摘Liver fibrosis is a reversible wound-healing process aimed at maintaining organ integrity, and presents as the critical pre-stage of liver cirrhosis, which will eventually progress to hepatocellular carcinoma in the absence of liver transplantation. Fibrosis generally results from chronic hepatic injury caused by various factors, mainly viral infection, schistosomiasis, and alcoholism; however, the exact pathological mechanisms are still unknown. Although numerous drugs have been shown to have antifibrotic activity in vitro and in animal models, none of these drugs have been shown to be efficacious in the clinic. Importantly, hepatic stellate cells(HSCs) play a key role in the initiation, progression, and regression of liver fibrosis by secreting fibrogenic factors that encourage portal fibrocytes, fibroblasts, and bone marrow-derived myofibroblasts to produce collagen and thereby propagate fibrosis. These cells are subject to intricate cross-talk with adjacent cells, resulting in scarring and subsequent liver damage. Thus, an understanding of the molecular mechanisms of liver fibrosis and their relationships with HSCs is essential for the discovery of new therapeutic targets. This comprehensive review outlines the role of HSCs in liver fibrosis and details novel strategies to suppress HSC activity, thereby providing new insights into potential treatments for liver fibrosis.
基金This study was supported by grants from the Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(No.2016-I2M-1-014)the National Major Science&Technology Project for Control and Prevention of Major Infectious Diseases in China(Nos.2017ZX10103004,2018ZX10305409,2017ZX10204401)the National Natural Science Foundation(No.81930063)
文摘Background:Human infections with zoonotic coronaviruses(CoVs),including severe acute respiratory syndrome(SARS)-CoV and Middle East respiratory syndrome(MERS)-CoV,have raised great public health concern globally.Here,we report a novel batorigin CoV causing severe and fatal pneumonia in humans.Methods:We collected clinical data and bronchoalveolar lavage(BAL)specimens from five patients with severe pneumonia from Wuhan Jinyintan Hospital,Hubei province,China.Nucleic acids of the BAL were extracted and subjected to next-generation sequencing.Virus isolation was carried out,and maximum-likelihood phylogenetic trees were constructed.Results:Five patients hospitalized from December 18 to December 29,2019 presented with fever,cough,and dyspnea accompanied by complications of acute respiratory distress syndrome.Chest radiography revealed diffuse opacities and consolidation.One of these patients died.Sequence results revealed the presence of a previously unknownβ-CoV strain in all five patients,with 99.8%to 99.9%nucleotide identities among the isolates.These isolates showed 79.0%nucleotide identity with the sequence of SARS-CoV(GenBank NC_004718)and 51.8%identity with the sequence of MERS-CoV(GenBank NC_019843).The virus is phylogenetically closest to a bat SARS-like CoV(SL-ZC45,GenBank MG772933)with 87.6%to 87.7%nucleotide identity,but is in a separate clade.Moreover,these viruses have a single intact open reading frame gene 8,as a further indicator of bat-origin CoVs.However,the amino acid sequence of the tentative receptor-binding domain resembles that of SARS-CoV,indicating that these viruses might use the same receptor.Conclusion:A novel bat-borne CoV was identified that is associated with severe and fatal respiratory disease in humans.