It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications,due to the fact that the covariances of noises are not exactly known.Our previous wor...It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications,due to the fact that the covariances of noises are not exactly known.Our previous work reveals that in such scenario the filter calculated mean square errors(FMSE)and the true mean square errors(TMSE)become inconsistent,while FMSE and TMSE are consistent in the Kalman filter with accurate models.This can lead to low credibility of state estimation regardless of using Kalman filters or adaptive Kalman filters.Obviously,it is important to study the inconsistency issue since it is vital to understand the quantitative influence induced by the inaccurate models.Aiming at this,the concept of credibility is adopted to discuss the inconsistency problem in this paper.In order to formulate the degree of the credibility,a trust factor is constructed based on the FMSE and the TMSE.However,the trust factor can not be directly computed since the TMSE cannot be found for practical applications.Based on the definition of trust factor,the estimation of the trust factor is successfully modified to online estimation of the TMSE.More importantly,a necessary and sufficient condition is found,which turns out to be the basis for better design of Kalman filters with high performance.Accordingly,beyond trust factor estimation with Sage-Husa technique(TFE-SHT),three novel trust factor estimation methods,which are directly numerical solving method(TFE-DNS),the particle swarm optimization method(PSO)and expectation maximization-particle swarm optimization method(EM-PSO)are proposed.The analysis and simulation results both show that the proposed TFE-DNS is better than the TFE-SHT for the case of single unknown noise covariance.Meanwhile,the proposed EMPSO performs completely better than the EM and PSO on the estimation of the credibility degree and state when both noise covariances should be estimated online.展开更多
Local markets in East Africa have been destroyed by raging fires,leading to the loss of life and property in the nearby communities.Electrical circuits,arson,and neglected charcoal stoves are the major causes of these...Local markets in East Africa have been destroyed by raging fires,leading to the loss of life and property in the nearby communities.Electrical circuits,arson,and neglected charcoal stoves are the major causes of these fires.Previous methods,i.e.,satellites,are expensive to maintain and cause unnecessary delays.Also,unit-smoke detectors are highly prone to false alerts.In this paper,an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference rules approach.A free open–source MATLAB/Simulink fuzzy toolbox integrated into MATLAB 2018a is used to investigate the performance of the Interval Type-2 fuzzy model.Two crisp input parameters,namely:FIT and FIG��are used.Results show that the Interval Type-2 model achieved an accuracy value of FIO�=98.2%,MAE=1.3010,MSE=1.6938 and RMSE=1.3015 using regression analysis.The study shall assist the firefighting personnel in fully understanding and mitigating the current level of fire danger.As a result,the proposed solution can be fully implemented in low-cost,low-power fire detection systems to monitor the state of fire with improved accuracy and reduced false alerts.Through informed decision-making in low-cost fire detection devices,early warning notifications can be provided to aid in the rapid evacuation of people,thereby improving fire safety surveillance,management,and protection for the market community.展开更多
基金supported by the National Natural Science Foundation of China(62033010)Aeronautical Science Foundation of China(2019460T5001)。
文摘It is quite often that the theoretic model used in the Kalman filtering may not be sufficiently accurate for practical applications,due to the fact that the covariances of noises are not exactly known.Our previous work reveals that in such scenario the filter calculated mean square errors(FMSE)and the true mean square errors(TMSE)become inconsistent,while FMSE and TMSE are consistent in the Kalman filter with accurate models.This can lead to low credibility of state estimation regardless of using Kalman filters or adaptive Kalman filters.Obviously,it is important to study the inconsistency issue since it is vital to understand the quantitative influence induced by the inaccurate models.Aiming at this,the concept of credibility is adopted to discuss the inconsistency problem in this paper.In order to formulate the degree of the credibility,a trust factor is constructed based on the FMSE and the TMSE.However,the trust factor can not be directly computed since the TMSE cannot be found for practical applications.Based on the definition of trust factor,the estimation of the trust factor is successfully modified to online estimation of the TMSE.More importantly,a necessary and sufficient condition is found,which turns out to be the basis for better design of Kalman filters with high performance.Accordingly,beyond trust factor estimation with Sage-Husa technique(TFE-SHT),three novel trust factor estimation methods,which are directly numerical solving method(TFE-DNS),the particle swarm optimization method(PSO)and expectation maximization-particle swarm optimization method(EM-PSO)are proposed.The analysis and simulation results both show that the proposed TFE-DNS is better than the TFE-SHT for the case of single unknown noise covariance.Meanwhile,the proposed EMPSO performs completely better than the EM and PSO on the estimation of the credibility degree and state when both noise covariances should be estimated online.
文摘Local markets in East Africa have been destroyed by raging fires,leading to the loss of life and property in the nearby communities.Electrical circuits,arson,and neglected charcoal stoves are the major causes of these fires.Previous methods,i.e.,satellites,are expensive to maintain and cause unnecessary delays.Also,unit-smoke detectors are highly prone to false alerts.In this paper,an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference rules approach.A free open–source MATLAB/Simulink fuzzy toolbox integrated into MATLAB 2018a is used to investigate the performance of the Interval Type-2 fuzzy model.Two crisp input parameters,namely:FIT and FIG��are used.Results show that the Interval Type-2 model achieved an accuracy value of FIO�=98.2%,MAE=1.3010,MSE=1.6938 and RMSE=1.3015 using regression analysis.The study shall assist the firefighting personnel in fully understanding and mitigating the current level of fire danger.As a result,the proposed solution can be fully implemented in low-cost,low-power fire detection systems to monitor the state of fire with improved accuracy and reduced false alerts.Through informed decision-making in low-cost fire detection devices,early warning notifications can be provided to aid in the rapid evacuation of people,thereby improving fire safety surveillance,management,and protection for the market community.