期刊文献+

基于改进高斯—拉普拉斯算子的噪声图像边缘检测方法 被引量:40

Noise image edge detection based on improved Gauss-Laplace operator
下载PDF
导出
摘要 针对现有梯度算子在图像边缘检测中存在的对噪声比较敏感的问题,提出了一种改进的高斯—拉普拉斯算子的边缘检测方法。噪声图像中的边缘检测是一项关键任务,然而目前常用的几种梯度算子,包括已经提出的高斯—拉普拉斯算子都没能取得理想效果。提出的方法对传统的拉普拉斯边缘检测算子作了改进,并与高斯滤波器相结合,应用高斯滤波器平滑图像,抑制噪声,再基于拉普拉斯梯度边缘检测器进行边缘检测。最后,在imagenet数据集中选取了10幅图像进行实验,将提出的高斯梯度边缘检测器与传统的边缘检测器进行比较。评估结果显示,提出的方法所获得的峰值信噪比(PSNR)高于对比算法,而均方误差(MSE)更小。实验结果表明,提出的方法在实际应用中能够有效提高噪声图像边缘检测的质量。 Aiming at the problem that the existing gradient operator is sensitive to noise in image edge detection,this paper proposed an improved Gaussian-Laplacian edge detection method.Edge detection in noisy images was a key task.However, several commonly used gradient operators, including the proposed Gaussian-Laplace operator,had failed to achieve the desired results.The proposed method improved the traditional Laplacian edge detection operator and combined it with a Gaussian filter.First,it used a Gaussian filter to smooth the image and suppress noise.Then it performed edge detection based on a Laplacian gradient edge detector.Finally,it selected 10 images in the imagenet data set.It compared the Gaussian gradient edge detector proposed with the traditional edge detector.The evaluation results show that the PSNR obtained by the proposed method is higher than that of the comparison algorithm,and the mean square error(MSE) is smaller.Experimental results show that the proposed method can effectively improve the quality of noise image edge detection in practical applications.
作者 代文征 杨勇 Dai Wenzheng;Yang Yong(School of Information Engineering,Huanghe S & T University,Zhengzhou 450063,China;School of Computer Science & Technology,Huazhong University of Science & Technology,Wuhan 430074,China)
出处 《计算机应用研究》 CSCD 北大核心 2019年第8期2544-2547,2555,共5页 Application Research of Computers
基金 国家青年科学基金资助项目(61502432) 河南省科技厅科技攻关计划资助项目(152102210001) 河南省人力资源与社会保障厅博士后项目(2014022)
关键词 边缘检测 高斯-拉普拉斯 高斯滤波器 噪声图像 峰值信噪比 均方误差 edge detection Gauss-Laplace Gauss filter noise image peak signalto noise ratio(PSNR) mean square error(MSE)
  • 相关文献

参考文献10

二级参考文献143

  • 1王夏黎,周明全,耿国华.一种基于HSV颜色空间的车辆牌照提取方法[J].计算机工程,2004,30(17):133-135. 被引量:22
  • 2陈小光,封举富.Gabor滤波器的快速实现[J].自动化学报,2007,33(5):456-461. 被引量:21
  • 3Wu Y, Chang E Y, Chang K C C, Smith J R. Optimal multimodal fusion for multimedia data analysis. In: Pro- ceedings of the 12th Annual ACM International Conference on Multimedia. New York, USA: ACM, 2004. 572-579. 被引量:1
  • 4Jiang T, Tan A H. Learning image-text associations. IEEE Transactions Knowledge and Data Engineering, 2009, 21 (2): 161-177. 被引量:1
  • 5Zhu X J. Semi-supervised learning literature survey. Com- puter Sciences TR 1530, University of Wisconsin - Madison, USA, 2008, 1-60. 被引量:1
  • 6Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of the llth Annual Con- ference on Computational Learning Theory. Madison, Wis- consin, USA: ACM, 1998. 92-100. 被引量:1
  • 7Zhang M L, Zhou Z H. CoTrade: confident co-training with data editing. IEEE Transactions on Systems, Man, and Cy- bernetics - Part B: Cybernetics, 2011, 41(6): 1612-1626. 被引量:1
  • 8Yan R, Naphade M. Semi-supervised cross feature learning for semantic concept detection in videos. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 657-663. 被引量:1
  • 9Gupta S, Kim J, Grauman K, Mooney R. Watch, listen & learn: co-training on captioned images and videos. Lecture Notes in Computer Science, 2008, 5211:457-472. 被引量:1
  • 10Kumar A, Daum6 HIII. A co-training approach for multi- view spectral clustering. In: Proceedings of the 2011 Inter- national Conference on Machine Learning. Bellevue, Wash- ington, USA: ACM, 2011. 393-400. 被引量:1

共引文献107

同被引文献329

引证文献40

二级引证文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部