We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin...We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.展开更多
We study the combination of quasi-neutral limit and viscosity limit of smooth solution for the three-dimensional compressible viscous Navier-Stokes-Poisson-Korteweg equation for plasmas and semiconductors.When the Deb...We study the combination of quasi-neutral limit and viscosity limit of smooth solution for the three-dimensional compressible viscous Navier-Stokes-Poisson-Korteweg equation for plasmas and semiconductors.When the Debye length and viscosity coefficients are sufficiently small,the initial value problem of the model has a unique smooth solution in the time interval where the corresponding incompressible Euler equation has a smooth solution.We also establish a sharp convergence rate of smooth solutions for three-dimensional compressible viscous Navier-Stokes-Poisson-Kortewe equation towards those for the incompressible Euler equation in combining quasi-neutral limit and viscosity limit.Moreover,if the incompressible Euler equation has a global smooth solution,the maximal existence time of three-dimensional compressible Navier-Stokes-Poisson-Korteweg equation tends to infinity as the Debye length and viscosity coefficients goes to zero.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11471063)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2015jcyj BX0083)the Educational Commission Foundation of Chongqing City,China(Grant No.KJ1600330)
文摘We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.
基金Supported by the Research Grant of Department of Education of Hubei Province(Q20142803)
文摘We study the combination of quasi-neutral limit and viscosity limit of smooth solution for the three-dimensional compressible viscous Navier-Stokes-Poisson-Korteweg equation for plasmas and semiconductors.When the Debye length and viscosity coefficients are sufficiently small,the initial value problem of the model has a unique smooth solution in the time interval where the corresponding incompressible Euler equation has a smooth solution.We also establish a sharp convergence rate of smooth solutions for three-dimensional compressible viscous Navier-Stokes-Poisson-Kortewe equation towards those for the incompressible Euler equation in combining quasi-neutral limit and viscosity limit.Moreover,if the incompressible Euler equation has a global smooth solution,the maximal existence time of three-dimensional compressible Navier-Stokes-Poisson-Korteweg equation tends to infinity as the Debye length and viscosity coefficients goes to zero.