期刊文献+

Convergence of the Three-Dimensional Compressible Navier-Stokes-Poisson- Korteweg Equation to the Incompressible Euler Equation

Convergence of the Three-Dimensional Compressible Navier-Stokes-PoissonKorteweg Equation to the Incompressible Euler Equation
原文传递
导出
摘要 We study the combination of quasi-neutral limit and viscosity limit of smooth solution for the three-dimensional compressible viscous Navier-Stokes-Poisson-Korteweg equation for plasmas and semiconductors.When the Debye length and viscosity coefficients are sufficiently small,the initial value problem of the model has a unique smooth solution in the time interval where the corresponding incompressible Euler equation has a smooth solution.We also establish a sharp convergence rate of smooth solutions for three-dimensional compressible viscous Navier-Stokes-Poisson-Kortewe equation towards those for the incompressible Euler equation in combining quasi-neutral limit and viscosity limit.Moreover,if the incompressible Euler equation has a global smooth solution,the maximal existence time of three-dimensional compressible Navier-Stokes-Poisson-Korteweg equation tends to infinity as the Debye length and viscosity coefficients goes to zero. We study the combination of quasi-neutral limit and viscosity limit of smooth solution for the three-dimensional compressible viscous Navier-Stokes-Poisson-Korteweg equation for plasmas and semiconductors.When the Debye length and viscosity coefficients are sufficiently small,the initial value problem of the model has a unique smooth solution in the time interval where the corresponding incompressible Euler equation has a smooth solution.We also establish a sharp convergence rate of smooth solutions for three-dimensional compressible viscous Navier-Stokes-Poisson-Kortewe equation towards those for the incompressible Euler equation in combining quasi-neutral limit and viscosity limit.Moreover,if the incompressible Euler equation has a global smooth solution,the maximal existence time of three-dimensional compressible Navier-Stokes-Poisson-Korteweg equation tends to infinity as the Debye length and viscosity coefficients goes to zero.
作者 ZHOU Fang
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第1期19-28,共10页 武汉大学学报(自然科学英文版)
基金 Supported by the Research Grant of Department of Education of Hubei Province(Q20142803)
关键词 Navier-Stokes-Poisson-Korteweg equation incom-pressible Euler equation smooth solution energy-type error esti-mate Navier-Stokes-Poisson-Korteweg equation incom-pressible Euler equation smooth solution energy-type error esti-mate
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部