针对节能装置节能效果的预报仍然依赖模型试验,理论方法对节能效果的预报存在较多困难的问题,提出了一种基于面元法和RANS(Reynolds Average Navier-Stokes)方程的桨前节能装置节能效果的理论预报方法,并以此准确预报了某肥大型船裸船...针对节能装置节能效果的预报仍然依赖模型试验,理论方法对节能效果的预报存在较多困难的问题,提出了一种基于面元法和RANS(Reynolds Average Navier-Stokes)方程的桨前节能装置节能效果的理论预报方法,并以此准确预报了某肥大型船裸船体及安装节能装置后船体桨盘面的伴流场,在此基础上,采用低阶面元法,编写了在该伴流场中螺旋桨非定常水动力性能的预报程序,预报了螺旋桨前置导管、补偿导管和整流鳍的节能效果.计算结果表明,采用该方法预报桨前节能装置的节能效果是可行的,安装3种节能装置后,螺旋桨的效率均有显著提高.展开更多
This review provides a comprehensive account of energy efficient lighting devices, their working principles and the advancement of these materials as an underpinning to the development of technology. Particular attent...This review provides a comprehensive account of energy efficient lighting devices, their working principles and the advancement of these materials as an underpinning to the development of technology. Particular attention has been given to solid state lighting devices and their applications since they have attracted the most interest and are the most promising. Solid state lighting devices including white light emitting diodes (LEDs), organic LEDs (OLEDs), quantum-dot LEDs (QLEDs) and carbon-dot LEDs (CLEDs) are promising energy efficient lighting sources for displays and general lighting. However there is no universal solution that will give better performance and efficiency for all types of applications. LEDs are replacing traditional lamp,; for both general lighting and display applications, whereas OLEDs are finding their own special application,; in various areas. QLEDs and CLEDs have advantages such as high quantum yields, narrow emission spectra, tunable emission spectra and good stability over OLEDs, so applications for these devices are being extended to new types of lighting sources. There is a great dean of research on these materials and their processing technologies and the commercial viability of these technologies appears strong.展开更多
文摘针对节能装置节能效果的预报仍然依赖模型试验,理论方法对节能效果的预报存在较多困难的问题,提出了一种基于面元法和RANS(Reynolds Average Navier-Stokes)方程的桨前节能装置节能效果的理论预报方法,并以此准确预报了某肥大型船裸船体及安装节能装置后船体桨盘面的伴流场,在此基础上,采用低阶面元法,编写了在该伴流场中螺旋桨非定常水动力性能的预报程序,预报了螺旋桨前置导管、补偿导管和整流鳍的节能效果.计算结果表明,采用该方法预报桨前节能装置的节能效果是可行的,安装3种节能装置后,螺旋桨的效率均有显著提高.
文摘This review provides a comprehensive account of energy efficient lighting devices, their working principles and the advancement of these materials as an underpinning to the development of technology. Particular attention has been given to solid state lighting devices and their applications since they have attracted the most interest and are the most promising. Solid state lighting devices including white light emitting diodes (LEDs), organic LEDs (OLEDs), quantum-dot LEDs (QLEDs) and carbon-dot LEDs (CLEDs) are promising energy efficient lighting sources for displays and general lighting. However there is no universal solution that will give better performance and efficiency for all types of applications. LEDs are replacing traditional lamp,; for both general lighting and display applications, whereas OLEDs are finding their own special application,; in various areas. QLEDs and CLEDs have advantages such as high quantum yields, narrow emission spectra, tunable emission spectra and good stability over OLEDs, so applications for these devices are being extended to new types of lighting sources. There is a great dean of research on these materials and their processing technologies and the commercial viability of these technologies appears strong.