The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear probl...The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.展开更多
In this paper, we study the Lp (2≤p≤ +∞) convergence rates of the solutions to the Cauchy problem of the so-called p-system with nonlinear damping. Precisely, we show that the corresponding Cauchy problem admits a ...In this paper, we study the Lp (2≤p≤ +∞) convergence rates of the solutions to the Cauchy problem of the so-called p-system with nonlinear damping. Precisely, we show that the corresponding Cauchy problem admits a unique global solution (v (x,t), u(x, t)) and such a solution tends time-asymptotically to the corresponding nonlinear diffusion wave ((v|-)(x,t),(u|-)(x,t)) governed by the classical Darcy's law provided that the corresponding prescribed initial error function lies in and is sufficiently small. Furthermore, the Lp (2≤p≤ +∞) convergence rates of the solutions are also obtained.展开更多
For combinatorial system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward and two-d...For combinatorial system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as implicit-explicit difference scheme, calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates, are adopted. Optimal order estimates in L 2 norm are derived to determine the error in the second order approximate solution. This method has already been applied to the numerical simulation of migration-accumulation of oil resources. Keywords: combinatorial system, multilayer dynamics of fluids in porous media, two-class upwind finite difference fractional steps method, convergence, numerical simulation of energy sources.展开更多
For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as pi...For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as piecewise biquadratic interpolation, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L^2 norm are derived to determine the error in the approximate solution.展开更多
This paper studies the asymptotic behavior ofweak entropy solutions to the Cauchy problem of the so-called p-system with damping. The convergence rates to nonlinear diffusion waves for weak entropy solutions are obtai...This paper studies the asymptotic behavior ofweak entropy solutions to the Cauchy problem of the so-called p-system with damping. The convergence rates to nonlinear diffusion waves for weak entropy solutions are obtained in L∞-norm or L2-norm. These convergence rates are the same to the decay rates of smooth solution obtained by Nishihara. They are proved by using the vanishing viscosity method and the elementary L2-energy method.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51378293,51078199,50678093,and 50278046)the Program for Changjiang Scholars and the Innovative Research Team in University of China(No.IRT00736)
文摘The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach.
基金supported by the Program for New Century Excellent Talents in University(Grant No.NCET-04-0745)the Key Project of the National Natural Science Foundation of China(Grant No.10431060)the Key Project of Chinese Ministry of Education(Grant No.104128),respectively.
文摘In this paper, we study the Lp (2≤p≤ +∞) convergence rates of the solutions to the Cauchy problem of the so-called p-system with nonlinear damping. Precisely, we show that the corresponding Cauchy problem admits a unique global solution (v (x,t), u(x, t)) and such a solution tends time-asymptotically to the corresponding nonlinear diffusion wave ((v|-)(x,t),(u|-)(x,t)) governed by the classical Darcy's law provided that the corresponding prescribed initial error function lies in and is sufficiently small. Furthermore, the Lp (2≤p≤ +∞) convergence rates of the solutions are also obtained.
基金This work was supported by the Major State Basic Research Program of China(Grant No. 1990328) the National Tackling Key Problem Program, the National Natural Science Foundation of China (Grant Nos. 19871051 and 19972039) the Doctorate Foundation
文摘For combinatorial system of multilayer dynamics of fluids in porous media, the second order and first order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques, such as implicit-explicit difference scheme, calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates, are adopted. Optimal order estimates in L 2 norm are derived to determine the error in the second order approximate solution. This method has already been applied to the numerical simulation of migration-accumulation of oil resources. Keywords: combinatorial system, multilayer dynamics of fluids in porous media, two-class upwind finite difference fractional steps method, convergence, numerical simulation of energy sources.
基金Project supported by the National Scaling Programthe National Tackling Key Problems Programthe Doctorate Foundation of the State Education Commission of China
文摘For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as piecewise biquadratic interpolation, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L^2 norm are derived to determine the error in the approximate solution.
基金The research was supported by the Zheng Ge Ru Foundation of CUHK and two grants from the National Natural Science Foundation of China(#10171037) sponsored by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry respectively.
文摘This paper studies the asymptotic behavior ofweak entropy solutions to the Cauchy problem of the so-called p-system with damping. The convergence rates to nonlinear diffusion waves for weak entropy solutions are obtained in L∞-norm or L2-norm. These convergence rates are the same to the decay rates of smooth solution obtained by Nishihara. They are proved by using the vanishing viscosity method and the elementary L2-energy method.