Pt-based magnetic nano catalysts are one of the most suitable cand idates for electrocatalytic materials due to their high electrochemistry activity and retrievability.Unfortunately,the inferior durability prevents th...Pt-based magnetic nano catalysts are one of the most suitable cand idates for electrocatalytic materials due to their high electrochemistry activity and retrievability.Unfortunately,the inferior durability prevents them from being scaled-up,limiting their commercial applications.Herein,an antiferromagnetic element Mn was introduced into PtCo nanostructured alloy to synthesize uniform Mn-PtCo truncated octahedral nanoparticles(TONPs)by one-pot method.Our results show that Mn can tune the blocking temperature of Mn-PtCo TONPs due to its an tiferromag netism.At low temperatures,Mn-PtCo TONPs are ferromag netic,and the coercivity in creases gradually with in creasi ng Mn contents.At room temperature,the Mn-PtCo TONPs display superparamag netic behavior,which is greatly helpful for in dustrial recycling.Mn doping can not only modify the electronic structure of PtCo TONPs but also enhanee electrocatalytic performance for methanol oxidation reaction.The maximum specific activity of Mn-PtCo-3 reaches 8.1 A`m^-2,3.6 times of commercial Pt/C(2.2 A·m^-2)and 1.4 times of PtCo TONPs(5.6 A`m^-2),respectively.The mass activity decreases by only 30%after 2,000 cycles,while it is 45%and 99%(nearly inactive)for PtCo TONPs and commercial Pt/C catalysts,respectively.展开更多
The hydraulic properties of deeper Coastal Plain Sands, which form the main aquifer in the Niger Delta, were investigated around Eleme, Rivers State. The intent was to find out if frequent well failure was as a result...The hydraulic properties of deeper Coastal Plain Sands, which form the main aquifer in the Niger Delta, were investigated around Eleme, Rivers State. The intent was to find out if frequent well failure was as a result of the aquifer not having enough transmitting capacity to sustain the huge withdrawal necessary for Eleme and its environs where demand for groundwater withdrawal is very high because Eleme axis serves as a major industrial axis of River State or whether the frequent well failure was due to inefficient well construction practice. Constant discharge pumping tests were conducted in 8 deep borehole (250 - 310 m). Data generated during the test were analysed using Cooper-Jacob’s straight line method. The calculated transmissivity of the aquifers ranged from 1324 m2/day - 5815 m2/day. These values when compared with transmissivity values elsewhere indicate that the aquifers in the study area have excellent water yielding properties, plotting within the range of “Very Good” in water transmitting capacity scale. Coefficient of permeability ranged from 13.65 m/d - 59.9 m/d. Coefficient of Storage ranged from 28.2 × 10-5 - 29.1 × 10-5 while the Specific capacities of the wells ranged from 48.75 3 - 78.13 m3/d/m. It is concluded that the deep aquifers of the Niger Delta do possess the capacity to produce and sustain large groundwater withdrawal. It is further recommended that competent drilling contractors be engaged in deep well construction in the area.展开更多
基金The work was supported by the National Natural Science Foundation(Nos.51625101,51431009,5180118&and 51701202)the State Key Development Program for Basic Research of China(No.2015CB921401)+3 种基金the Fundamental Research Funds for the Central University Universities of China(No.FRF-TP-16-001C2)the China Postdoctoral Science Foundation(No.2018M632792)Startup Research Fund of Zhengzhou University(No.32210815)Bejing Natural Science Foundation(No.Z180014).
文摘Pt-based magnetic nano catalysts are one of the most suitable cand idates for electrocatalytic materials due to their high electrochemistry activity and retrievability.Unfortunately,the inferior durability prevents them from being scaled-up,limiting their commercial applications.Herein,an antiferromagnetic element Mn was introduced into PtCo nanostructured alloy to synthesize uniform Mn-PtCo truncated octahedral nanoparticles(TONPs)by one-pot method.Our results show that Mn can tune the blocking temperature of Mn-PtCo TONPs due to its an tiferromag netism.At low temperatures,Mn-PtCo TONPs are ferromag netic,and the coercivity in creases gradually with in creasi ng Mn contents.At room temperature,the Mn-PtCo TONPs display superparamag netic behavior,which is greatly helpful for in dustrial recycling.Mn doping can not only modify the electronic structure of PtCo TONPs but also enhanee electrocatalytic performance for methanol oxidation reaction.The maximum specific activity of Mn-PtCo-3 reaches 8.1 A`m^-2,3.6 times of commercial Pt/C(2.2 A·m^-2)and 1.4 times of PtCo TONPs(5.6 A`m^-2),respectively.The mass activity decreases by only 30%after 2,000 cycles,while it is 45%and 99%(nearly inactive)for PtCo TONPs and commercial Pt/C catalysts,respectively.
文摘The hydraulic properties of deeper Coastal Plain Sands, which form the main aquifer in the Niger Delta, were investigated around Eleme, Rivers State. The intent was to find out if frequent well failure was as a result of the aquifer not having enough transmitting capacity to sustain the huge withdrawal necessary for Eleme and its environs where demand for groundwater withdrawal is very high because Eleme axis serves as a major industrial axis of River State or whether the frequent well failure was due to inefficient well construction practice. Constant discharge pumping tests were conducted in 8 deep borehole (250 - 310 m). Data generated during the test were analysed using Cooper-Jacob’s straight line method. The calculated transmissivity of the aquifers ranged from 1324 m2/day - 5815 m2/day. These values when compared with transmissivity values elsewhere indicate that the aquifers in the study area have excellent water yielding properties, plotting within the range of “Very Good” in water transmitting capacity scale. Coefficient of permeability ranged from 13.65 m/d - 59.9 m/d. Coefficient of Storage ranged from 28.2 × 10-5 - 29.1 × 10-5 while the Specific capacities of the wells ranged from 48.75 3 - 78.13 m3/d/m. It is concluded that the deep aquifers of the Niger Delta do possess the capacity to produce and sustain large groundwater withdrawal. It is further recommended that competent drilling contractors be engaged in deep well construction in the area.