The toxicity of chlortetracycline (CTC) on maize (Zea mays L.) growth and reactive oxygen species (ROS) generation was studied.The root and shoot lengths and fresh weights of maize seedlings were inhibited by CT...The toxicity of chlortetracycline (CTC) on maize (Zea mays L.) growth and reactive oxygen species (ROS) generation was studied.The root and shoot lengths and fresh weights of maize seedlings were inhibited by CTC treatment (p 〈 0.05).Root length was more sensitive than other parameters with the EC 10 value of 0.064 mg/L.The spin trapping technique followed by electron paramagnetic resonance (EPR) analysis was used to quantify the ROS production.The ROS generated in maize roots after exposure to CTC was identified as hydroxyl radical (·OH).The EPR signal intensity correlated positively with the logarithm of CTC concentrations exposed (p 〈 0.05).The dynamic changes of malondialdehyde (MDA) contents and the antioxidative enzyme activities in maize roots were also determined.As compared to the control group,CTC was found to significantly increase MDA content.Treatment of maize roots with the ·OH scavenger sodium benzoate (SB) reduced the MDA content and enhanced the antioxidative enzyme activities.The results demonstrated the harmfulness of CTC at high dose to maize in the early developmental stage,and clarified that the inducement of ·OH is one of the mechanisms of CTC toxicity.展开更多
基金supported by the National Natural Science Foundation of China (No. 20877087,40730740)the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2009ZX07207-002)
文摘The toxicity of chlortetracycline (CTC) on maize (Zea mays L.) growth and reactive oxygen species (ROS) generation was studied.The root and shoot lengths and fresh weights of maize seedlings were inhibited by CTC treatment (p 〈 0.05).Root length was more sensitive than other parameters with the EC 10 value of 0.064 mg/L.The spin trapping technique followed by electron paramagnetic resonance (EPR) analysis was used to quantify the ROS production.The ROS generated in maize roots after exposure to CTC was identified as hydroxyl radical (·OH).The EPR signal intensity correlated positively with the logarithm of CTC concentrations exposed (p 〈 0.05).The dynamic changes of malondialdehyde (MDA) contents and the antioxidative enzyme activities in maize roots were also determined.As compared to the control group,CTC was found to significantly increase MDA content.Treatment of maize roots with the ·OH scavenger sodium benzoate (SB) reduced the MDA content and enhanced the antioxidative enzyme activities.The results demonstrated the harmfulness of CTC at high dose to maize in the early developmental stage,and clarified that the inducement of ·OH is one of the mechanisms of CTC toxicity.