Some precision electronics such as signal transmitters need to not only emit effective signal but also be protected from the external electromagnetic(EM)waves.Thus,directional electromagnetic interference(EMI)shieldin...Some precision electronics such as signal transmitters need to not only emit effective signal but also be protected from the external electromagnetic(EM)waves.Thus,directional electromagnetic interference(EMI)shielding materials(i.e.,when the EM wave is incident from different sides of the sample,the EMI shielding effectiveness(SE)is rather different)are strongly required;unfortunately,no comprehensive literature report is available on this research field.Herein,Nicoated melamine foams(Ni@MF)were obtained by a facile electroless plating process,and multiwalled carbon nanotube(CNT)papers were prepared via a simple vacuum-assisted self-assembly approach.Then,step-wise asymmetric poly(butylene adipate-co-terephthalate)(PBAT)composites consisting of loose Ni@MF layer and compact CNT layer were successfully fabricated via a facile solution encapsulation approach.The step-wise asymmetric structures and electrical conductivity endow the Ni@MF/CNT/PBAT composites with unprecedented directional EMI shielding performances.When the EM wave is incident from Ni@MF layer or CNT layer,Ni@MF-5/CNT-75/PBAT exhibits the total EMI SE(SET)of 38.3 and 29.5 dB,respectively,which illustrates theΔSET of 8.8 dB.This work opens a new research window for directional EMI shielding composites with step-wise asymmetric structures,which has promising applications in portable electronics and next-generation communication technologies.展开更多
Low-voltage electrical apparatuses(LVEAs)have many workpieces and intricate geometric structures,and the assembly process is rigid and labor-intensive,and has little balance.The assembly process cannot readily adapt t...Low-voltage electrical apparatuses(LVEAs)have many workpieces and intricate geometric structures,and the assembly process is rigid and labor-intensive,and has little balance.The assembly process cannot readily adapt to changes in assembly situations.To address these issues,a collaborative assembly is proposed.Based on the requirements of collaborative assembly,a colored Petri net(CPN)model is proposed to analyze the performance of the interaction and self-government of robots in collaborative assembly.Also,an artificial potential field based planning algorithm(AFPA)is presented to realize the assembly planning and dynamic interaction of robots in the collaborative assembly of LVEAs.Then an adaptive quantum genetic algorithm(AQGA)is developed to optimize the assembly process.Lastly,taking a two-pole circuit-breaker controller with leakage protection(TPCLP)as an assembly instance,comparative results show that the collaborative assembly is cost-effective and flexible in LVEA assembly.The distribution of resources can also be optimized in the assembly.The assembly robots can interact dynamically with each other to accommodate changes that may occur in the LVEA assembly.展开更多
The spontaneously generated electrical charge of a droplet dispensed from conventional pipetting is undesirable and unpredictable for most experiments that use pipetting.Hence,a method for controlling and removing the...The spontaneously generated electrical charge of a droplet dispensed from conventional pipetting is undesirable and unpredictable for most experiments that use pipetting.Hence,a method for controlling and removing the electrical charge needs to be developed.In this study,by using the electrode-deposited pipet tip(E-pipet tip),the charge-controlling system is newly developed and the electrical charge of a droplet is precisely controlled.The effect of electrolyte concentration and volume of the transferred solution to the electrical charge of a dispensed droplet is theoretically and experimentally investigated by using the equivalent capacitor model.Furthermore,a proof-of-concept example of the self-alignment and self-assembly of sequentially dispensed multiple droplets is demonstrated as one of the potential applications.Given that the electrical charge of the various aqueous droplets can be precisely and simply controlled,the fabricated E-pipet tip can be broadly utilized not only as a general charge-controlling platform of aqueous droplets but also as a powerful tool to explore fundamental scientific research regarding electrical charge of a droplet,such as the surface oscillation and evaporation of charged droplets.展开更多
Most porous conductive frameworks are highly anisotropic in their structures thus leading to anisotropic charge transport.Here we report a supramolecular self-assembly which is constructed by intermolecular hydrogen b...Most porous conductive frameworks are highly anisotropic in their structures thus leading to anisotropic charge transport.Here we report a supramolecular self-assembly which is constructed by intermolecular hydrogen bonding andπ···πinteractions.This material features a chiral,porous,cubic framework structure withπ-stacked helical columns along all of the three Cartesian coordinates.As a result,isotropic charge transport with an electrical conductivity(σ)of 2.1×10^(–7)S/cm is achieved.By achieving isotropic charge transport in aπ-stacked supramolecular assembly,these results provide a new type of isotropic conductive framework materials alternative to conductive metal-organic frameworks(MOFs).展开更多
基金Science and Technology Plan Project of Guizhou Province(No.[2019]1084 and[2018]5781)National Natural Science Foundation of China(No.51963003)+3 种基金The Youth Science and Technology Talent Growth Project of Guizhou Province Education Department(No.[2018]106)Outstanding Youth Program of Guizhou Province(No.20170439178)The Key project of Fundamental research in Guizhou province[2020]1Z044Scientific Research Project of Introduced Talents of Guizhou University(No.(2017)07)are acknowledged for the financial support.
文摘Some precision electronics such as signal transmitters need to not only emit effective signal but also be protected from the external electromagnetic(EM)waves.Thus,directional electromagnetic interference(EMI)shielding materials(i.e.,when the EM wave is incident from different sides of the sample,the EMI shielding effectiveness(SE)is rather different)are strongly required;unfortunately,no comprehensive literature report is available on this research field.Herein,Nicoated melamine foams(Ni@MF)were obtained by a facile electroless plating process,and multiwalled carbon nanotube(CNT)papers were prepared via a simple vacuum-assisted self-assembly approach.Then,step-wise asymmetric poly(butylene adipate-co-terephthalate)(PBAT)composites consisting of loose Ni@MF layer and compact CNT layer were successfully fabricated via a facile solution encapsulation approach.The step-wise asymmetric structures and electrical conductivity endow the Ni@MF/CNT/PBAT composites with unprecedented directional EMI shielding performances.When the EM wave is incident from Ni@MF layer or CNT layer,Ni@MF-5/CNT-75/PBAT exhibits the total EMI SE(SET)of 38.3 and 29.5 dB,respectively,which illustrates theΔSET of 8.8 dB.This work opens a new research window for directional EMI shielding composites with step-wise asymmetric structures,which has promising applications in portable electronics and next-generation communication technologies.
基金supported by the National Natural Science Foundation of China(No.52175124)the Zhejiang Provincial Natural Science Foundation of China(No.LZ21E050003)the Fundamental Research Funds for Zhejiang Universities,China(No.RF-C2020004)。
文摘Low-voltage electrical apparatuses(LVEAs)have many workpieces and intricate geometric structures,and the assembly process is rigid and labor-intensive,and has little balance.The assembly process cannot readily adapt to changes in assembly situations.To address these issues,a collaborative assembly is proposed.Based on the requirements of collaborative assembly,a colored Petri net(CPN)model is proposed to analyze the performance of the interaction and self-government of robots in collaborative assembly.Also,an artificial potential field based planning algorithm(AFPA)is presented to realize the assembly planning and dynamic interaction of robots in the collaborative assembly of LVEAs.Then an adaptive quantum genetic algorithm(AQGA)is developed to optimize the assembly process.Lastly,taking a two-pole circuit-breaker controller with leakage protection(TPCLP)as an assembly instance,comparative results show that the collaborative assembly is cost-effective and flexible in LVEA assembly.The distribution of resources can also be optimized in the assembly.The assembly robots can interact dynamically with each other to accommodate changes that may occur in the LVEA assembly.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP).(No.2014R1A2A1A010065272011-0030075+1 种基金2012R1A2A2A06047424)supported by the convergence technology development program for bionic arm through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.2014M3C1B2048632)
文摘The spontaneously generated electrical charge of a droplet dispensed from conventional pipetting is undesirable and unpredictable for most experiments that use pipetting.Hence,a method for controlling and removing the electrical charge needs to be developed.In this study,by using the electrode-deposited pipet tip(E-pipet tip),the charge-controlling system is newly developed and the electrical charge of a droplet is precisely controlled.The effect of electrolyte concentration and volume of the transferred solution to the electrical charge of a dispensed droplet is theoretically and experimentally investigated by using the equivalent capacitor model.Furthermore,a proof-of-concept example of the self-alignment and self-assembly of sequentially dispensed multiple droplets is demonstrated as one of the potential applications.Given that the electrical charge of the various aqueous droplets can be precisely and simply controlled,the fabricated E-pipet tip can be broadly utilized not only as a general charge-controlling platform of aqueous droplets but also as a powerful tool to explore fundamental scientific research regarding electrical charge of a droplet,such as the surface oscillation and evaporation of charged droplets.
基金supported by the National Natural Science Foundation of China(Nos.21871262 and 21901242)the Natural Science Foundation of Fujian Province(No.2020J05080)+3 种基金the Natural Science Foundation of Xiamen(No.3502Z20206080)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(No.2021ZR110)the Recruitment Program of Global Youth ExpertsYouth Innovation Promotion Association CAS(No.2021302)。
文摘Most porous conductive frameworks are highly anisotropic in their structures thus leading to anisotropic charge transport.Here we report a supramolecular self-assembly which is constructed by intermolecular hydrogen bonding andπ···πinteractions.This material features a chiral,porous,cubic framework structure withπ-stacked helical columns along all of the three Cartesian coordinates.As a result,isotropic charge transport with an electrical conductivity(σ)of 2.1×10^(–7)S/cm is achieved.By achieving isotropic charge transport in aπ-stacked supramolecular assembly,these results provide a new type of isotropic conductive framework materials alternative to conductive metal-organic frameworks(MOFs).