电网中特大功率负荷的功率动态变化对智能电能表产生不同程度的影响,甚至引起较大误差。为了分析智能电能表动态误差的来源,该文采用机理建模的方法分别建立智能电能表电压通道、具有可编程增益放大器(programmable gain amplifier,PG...电网中特大功率负荷的功率动态变化对智能电能表产生不同程度的影响,甚至引起较大误差。为了分析智能电能表动态误差的来源,该文采用机理建模的方法分别建立智能电能表电压通道、具有可编程增益放大器(programmable gain amplifier,PGA)增益反馈控制的电流通道、有功功率测量单元及电能测量单元的动态数学模型,并集成各单元之间的信号传递关系,综合建立智能电能表全系统模型。以此为基础,建立动态误差仿真平台,分析各单元的模型参数对有功电能动态误差的影响。通过搭建动态误差测试系统,测试典型电能表的动态误差,与仿真分析结果的对比表明,该文提出的全系统模型可用于分析电能表动态条件下的内部误差影响因素、明确误差来源。研究结果可为后续提高智能电能表的动态性能提供定量的决策参考。展开更多
文摘电网中特大功率负荷的功率动态变化对智能电能表产生不同程度的影响,甚至引起较大误差。为了分析智能电能表动态误差的来源,该文采用机理建模的方法分别建立智能电能表电压通道、具有可编程增益放大器(programmable gain amplifier,PGA)增益反馈控制的电流通道、有功功率测量单元及电能测量单元的动态数学模型,并集成各单元之间的信号传递关系,综合建立智能电能表全系统模型。以此为基础,建立动态误差仿真平台,分析各单元的模型参数对有功电能动态误差的影响。通过搭建动态误差测试系统,测试典型电能表的动态误差,与仿真分析结果的对比表明,该文提出的全系统模型可用于分析电能表动态条件下的内部误差影响因素、明确误差来源。研究结果可为后续提高智能电能表的动态性能提供定量的决策参考。