利用神经网络进行了电动汽车用的磷酸铁锂(LiFePO4)电池荷电状态(state of charge,SOC)预测研究。在分析磷酸铁锂电池充放电机理的基础上,采用levenberg-marquardt(LM)算法建立了磷酸铁锂电池的BP(back propagation)神经网络模型,并进...利用神经网络进行了电动汽车用的磷酸铁锂(LiFePO4)电池荷电状态(state of charge,SOC)预测研究。在分析磷酸铁锂电池充放电机理的基础上,采用levenberg-marquardt(LM)算法建立了磷酸铁锂电池的BP(back propagation)神经网络模型,并进行了电池SOC值的预测。结果表明,基于神经网络的电池SOC预测方法具有较高的精度,可用来预测磷酸铁锂电池的SOC值。展开更多
根据混合动力客车锂离子动力电池组单体只数多、分布比较分散的特点,设计了基于双 CAN 总线的分布式电池管理系统(BMS)。该系统由若干采样模块和一个主控模块组成,与动力电池之间的连线数量少,可扩展性强,而且采用复杂可编程逻辑器件(CP...根据混合动力客车锂离子动力电池组单体只数多、分布比较分散的特点,设计了基于双 CAN 总线的分布式电池管理系统(BMS)。该系统由若干采样模块和一个主控模块组成,与动力电池之间的连线数量少,可扩展性强,而且采用复杂可编程逻辑器件(CPLD)技术实现了串联电池组单体电压的采样方法,实现了温度的低成本采样方法,建立了基于"预测-修正"方法的动力电池荷电状态(SOC)的估算方法,可以实时地修正 SOC估计的误差和可靠地实现对动力电池运行时状态参数的监测,提高电池 SOC 的估算精度。展开更多
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial...The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.展开更多
文摘利用神经网络进行了电动汽车用的磷酸铁锂(LiFePO4)电池荷电状态(state of charge,SOC)预测研究。在分析磷酸铁锂电池充放电机理的基础上,采用levenberg-marquardt(LM)算法建立了磷酸铁锂电池的BP(back propagation)神经网络模型,并进行了电池SOC值的预测。结果表明,基于神经网络的电池SOC预测方法具有较高的精度,可用来预测磷酸铁锂电池的SOC值。
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA110303)the Beijing Municipal Science & Technology Project,China (Grant No. Z111100064311001)
文摘The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.